summaryrefslogtreecommitdiffstats
path: root/include/mm/experiments/mmdiag_matrix.hpp
blob: 124e4b341f88203e9c50261970f305325229e707 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#pragma once

namespace mm {

    template<typename T>
    class diag_component;

    template<typename T, std::size_t N>
    class multi_diag_matrix;
}

/*
 * Optimized case of square matrix
 * It's a matrix only composed by a diagonal 
 */

template<class T>
class mm::diag_component
{
public:
    virtual int dimension() const = 0;
};

template<class T, std::size_t N>
class mm::diag_vector
{
public:

    // TODO, define constructor

    virtual int dimension() const override
    {
        return N;
    }

private:
    std::array<T, N - ((Diag < 0) ? -Diag : Diag)> vector;
};

template<typename T, std::size_t N>
class mm::multi_diag_matrix {
public:
    using type = T;

    template<typename U, std::size_t N>
    friend class mm::multi_diag_matrix;

    multi_diag_matrix() : shared_zero(0) {}
    ~multi_diag_matrix();

    // copyable and movable
    multi_diag_matrix(const multi_diag_matrix<T, N>& other);
    multi_diag_matrix(multi_diag_matrix<T, N>&& other);

    // copy from another matrix
    template<std::size_t N>
    multi_diag_matrix(const multi_diag_matrix<T, N>& other);

    // standard access data
    T& at(std::size_t row, std::size_t col);
    const T& at(std::size_t row, std::size_t col) const;

    // allows to access a matrix M at row j col k with M[j][k]
    auto operator[](std::size_t index);

    // swap two diagonals
    void swap_diags(std::size_t k, std::size_t l);

    // diagonal construction or substitution
    template<int Diag, int K = N - ((Diag < 0) ? -Diag : Diag)>
    void put_diag(const mm::diag_vector<T, K>& diag)
    {
        //static_assert((Diag <= -N) || (Diag >= N),
        static_assert(K < 1,
            "Diagonal number must be bounded between ]-N,N[")

        auto exist = diagonals.find(Diag);

        if (exist != diagonals.end())
            // copy
            *exists = diag;
        else
            // create and copy
            diagonals.insert(new mm::diag_vector<T, K>(diag));
    }

    // mathematical operations
    virtual multi_diag_matrix<T, N> transposed() const;
    inline multi_diag_matrix<T, N> td() const { return transposed(); }

    // multiplication rhs and lhs
    // TODO, need super class matrix abstraction and auto return type

    // A * M, TODO abstraction virtual method
    template <std::size_t Rows>
    basic_matrix<Rows, N> rhs_mult(const mm::basic_matrix<T, Rows, N>& A) const;

    // M * A, TODO abstraction virtual method
    template <std::size_t Cols>
    basic_matrix<N, Cols> lhs_mult(const mm::basic_matrix<T, N, Cols>& A) const;

protected:
    template<typename ConstIterator>
    multi_diag_matrix(ConstIterator begin, ConstIterator end);

private:
    // return an arbitrary zero in non-const mode
    T shared_zero;

    // ordered set of diagonals
    std::unordered_map<int, mm::diag_component<T>*> diagonals;
};

template<typename T, std::size_t N>
T& mm::multi_diag_matrix<T, N>::at(std::size_t row, std::size_t col) {
    assert(row < N); // "out of row bound"
    assert(col < N); // "out of column bound"

    const int k = row - col; 
    auto diag = diagonals.find(k);
    const int line = (k > 0) ? col : row;

    return (diag == diagonals.end()) ? (shared_zero = 0) : (*diag)[line];
}

template<typename T, std::size_t N>
const T& mm::multi_diag_matrix<T, N>::at(std::size_t row, std::size_t col) const {
    assert(row < N); // "out of row bound"
    assert(col < N); // "out of column bound"

    const int k = row - col;
    auto diag = diagonals.find(k);
    const int line = (k > 0) ? col : row;

    return (diag == diagonals.end()) ? 0 : (*diag)[line];
}

template<typename T, std::size_t N>
auto mm::multi_diag_matrix<T, N>::operator[](std::size_t index) {
    assert(index < N)
    
    // TODO, single row mapping
}

template <typename T, std::size_t N, std::size_t Rows>
mm::basic_matrix<Rows, N> mm::multi_diag_matrix<T, N>::rhs_mult(const mm::basic_matrix<T, Rows, N>& A) const
{
    // TODO
}

template <typename T, std::size_t N, std::size_t Cols>
mm::basic_matrix<N, Cols> mm::multi_diag_matrix<T, N>::lhs_mult(const mm::basic_matrix<T, N, Cols>& A) const
{
    mm::basic_matrix<N, Cols> out;


}