1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/* mmmatrix.hpp
* Part of Mathematical library built (ab)using Modern C++ 17 abstractions.
*
* This library is not intended to be _performant_, it does not contain
* hand written SMID / SSE / AVX optimizations. It is instead an example
* of highly inefficient (but abstract!) code, where matrices can contain any
* data type.
*
* Naoki Pross <naopross@thearcway.org>
* 2018 ~ 2019
*/
#pragma once
#include <iostream>
namespace mm {
template<typename T, std::size_t Rows, std::size_t Cols>
class basic_matrix;
template<typename T, std::size_t Rows>
using row_vec = basic_matrix<T, Rows, 1>;
template<typename T, std::size_t Cols>
using col_vec = basic_matrix<T, 1, Cols>;
}
template<typename T, std::size_t Rows, std::size_t Cols>
class mm::basic_matrix {
public:
using type = T;
static constexpr std::size_t rows = Rows;
static constexpr std::size_t cols = Cols;
basic_matrix(const basic_matrix<T, Rows, Cols>& other);
basic_matrix(basic_matrix<T, Rows, Cols>&& other);
template<std::size_t ORows, std::size_t OCols>
basic_matrix(const basic_matrix<T, ORows, OCols>& other);
// access data
T& at(std::size_t row, std::size_t col);
void swap_rows(std::size_t x, std::size_t y);
void swap_cols(std::size_t x, std::size_t y);
// mathematical operations
basic_matrix<T, Cols, Rows> transposed();
inline basic_matrix<T, Cols, Rows> t() { return transposed(); }
// bool is_invertible();
// bool invert();
// basic_matrix<T, Rows, Cols> inverse();
inline constexpr bool is_square() {
return (Rows == Cols);
}
private:
T data[Rows][Cols] = {};
};
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(const mm::basic_matrix<T, Rows, Cols>& other) {
for (int row = 0; row < Rows; row++)
for (int col = 0; col < Cols; col++)
data[row][col] = other.data[row][col];
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(mm::basic_matrix<T, Rows, Cols>&& other) {
data = other.data;
}
template<typename T, std::size_t Rows, std::size_t Cols>
template<std::size_t ORows, std::size_t OCols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(const mm::basic_matrix<T, ORows, OCols>& other) {
static_assert((ORows <= Rows),
"cannot copy a taller matrix into a smaller one"
);
static_assert((OCols <= Cols),
"cannot copy a larger matrix into a smaller one"
);
for (int row = 0; row < Rows; row++)
for (int col = 0; col < Cols; col++)
data[row][col] = other.data[row][col];
}
/* member functions */
template<typename T, std::size_t Rows, std::size_t Cols>
T& mm::basic_matrix<T, Rows, Cols>::at(std::size_t row, std::size_t col) {
static_assert(row < Rows, "out of row bound");
static_assert(col < Cols, "out of column bound");
return data[row][col];
}
template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_rows(std::size_t x, std::size_t y) {
if (x == y)
return;
for (int col = 0; col < Cols; col++)
std::swap(data[x][col], data[y][col]);
}
template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_cols(std::size_t x, std::size_t y) {
if (x == y)
return;
for (int row = 0; row < rows; row++)
std::swap(data[row][x], data[row][y]);
}
template<typename T, std::size_t M, std::size_t N>
mm::basic_matrix<T, N, M> mm::basic_matrix<T, M, N>::transposed() {
mm::basic_matrix<T, N, M> result;
for (int row = 0; row < M; row++)
for (int col = 0; col < N; col++)
result.at(row, col) = at(col, row);
return result;
}
/* operator overloading */
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator+(
const mm::basic_matrix<T, Rows, Cols>& a,
const mm::basic_matrix<T, Rows, Cols>& b
) {
mm::basic_matrix<T, Rows, Cols> result;
for (int row = 0; row < Rows; row++)
for (int col = 0; col < Cols; col++)
result.at(row, col) = a.at(row, col) + a.at(row, col);
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
const mm::basic_matrix<T, Rows, Cols>& m,
const T& scalar
) {
mm::basic_matrix<T, Rows, Cols> result;
for (int row = 0; row < Rows; row++)
for (int col = 0; col < Cols; col++)
result.at(row, col) = m.at(row, col) * scalar;
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
const T& scalar,
const mm::basic_matrix<T, Rows, Cols>& m
) {
return m * scalar;
}
template<typename T, std::size_t M, std::size_t P, std::size_t N>
mm::basic_matrix<T, M, N> operator*(
const mm::basic_matrix<T, M, P>& a,
const mm::basic_matrix<T, P, N>& b
) {
mm::basic_matrix<T, M, N> result;
// TODO: use a more efficient algorithm
for (int row = 0; row < M; row++)
for (int col = 0; col < N; col++)
for (int k = 0; k < P; k++)
result.at(row, col) = a.at(row, k) * b.at(k, col);
return result;
}
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator-(
const mm::basic_matrix<T, Rows, Cols>& a,
const mm::basic_matrix<T, Rows, Cols>& b
) {
return a + static_cast<T>(-1) * b;
}
template<typename T, std::size_t Rows, std::size_t Cols>
std::ostream& operator<<(std::ostream& os, const mm::basic_matrix<T, Rows, Cols>& m) {
for (int row = 0; row < Rows; row++) {
os << "[ ";
for (int col = 0; col < (Cols -1); col++) {
os << m.at(row, col);
}
os << m.at(Rows -1, Cols -1) << " ]\n";
}
return os;
}
|