summaryrefslogtreecommitdiffstats
path: root/include/mmmatrix.hpp
blob: d18f3f12b009bd631897c10cf8e0e7d5c637147c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/* mmmatrix.hpp
 * Part of Mathematical library built (ab)using Modern C++ 17 abstractions.
 *
 * This library is not intended to be _performant_, it does not contain
 * hand written SMID / SSE / AVX optimizations. It is instead an example
 * of highly inefficient (but abstract!) code, where matrices can contain any 
 * data type.
 *
 * Naoki Pross <naopross@thearcway.org>
 * 2018 ~ 2019
 */
#pragma once

#include <iostream>
#include <cstring>

namespace mm {
    template<typename T, std::size_t Rows, std::size_t Cols>
    class basic_matrix;


    template<typename T, std::size_t Rows, std::size_t Cols>
    class matrix;

    template<typename T, std::size_t N>
    class square_matrix;

    // template<typename T, std::size_t N>
    // class diag_matrix;

    template<typename T, std::size_t Rows>
    class row_vec;

    template<typename T, std::size_t Cols>
    class col_vec;
}

template<typename T, std::size_t Rows, std::size_t Cols>
class mm::basic_matrix {
public:
    using type = T;

    static constexpr std::size_t rows = Rows;
    static constexpr std::size_t cols = Cols;

    basic_matrix(const basic_matrix<T, Rows, Cols>& other);
    basic_matrix(basic_matrix<T, Rows, Cols>&& other);

    template<std::size_t ORows, std::size_t OCols>
    basic_matrix(const basic_matrix<T, ORows, OCols>& other);

    basic_matrix(const T (& values)[Rows][Cols]);
    basic_matrix(T (&& values)[Rows][Cols]);

    // access data
    T& at(std::size_t row, std::size_t col);
    auto&& operator[](std::size_t index);

    void swap_rows(std::size_t x, std::size_t y);
    void swap_cols(std::size_t x, std::size_t y);

    // mathematical operations
    basic_matrix<T, Cols, Rows> transposed();
    inline basic_matrix<T, Cols, Rows> trd() { return transposed(); }

    // bool is_invertible();
    // bool invert();
    // basic_matrix<T, Rows, Cols> inverse();


    /// downcast to square matrix
    inline constexpr bool is_square() { return (Rows == Cols); }
    inline constexpr square_matrix<T, Rows> to_square() {
        static_assert(is_square());
        return static_cast<square_matrix<T, Rows>>(*this);
    }


    /// downcast to row_vector
    inline constexpr bool is_row_vec() { return (Cols == 1); }
    inline constexpr row_vec<T, Rows> to_row_vec() {
        static_assert(is_row_vec());
        return static_cast<row_vec<T, Rows>>(*this);
    }

    /// downcast to col_vector
    inline constexpr bool is_col_vec() { return (Rows == 1); }
    inline constexpr col_vec<T, Cols> to_col_vec() {
        static_assert(is_col_vec());
        return static_cast<col_vec<T, Cols>>(*this);
    }

private:
    T data[Rows][Cols] = {};
};


template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(const mm::basic_matrix<T, Rows, Cols>& other) {
    for (int row = 0; row < Rows; row++)
        for (int col = 0; col < Cols; col++)
            data[row][col] = other.data[row][col];
}

template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(mm::basic_matrix<T, Rows, Cols>&& other) {
    data = other.data;
}

template<typename T, std::size_t Rows, std::size_t Cols>
template<std::size_t ORows, std::size_t OCols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(const mm::basic_matrix<T, ORows, OCols>& other) {
    static_assert((ORows <= Rows),
        "cannot copy a taller matrix into a smaller one"
    );

    static_assert((OCols <= Cols),
        "cannot copy a larger matrix into a smaller one"
    );

    for (int row = 0; row < Rows; row++)
        for (int col = 0; col < Cols; col++)
            data[row][col] = other.data[row][col];
}

template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(const T (& values)[Rows][Cols]) {
    std::memcpy(&data, &values, sizeof(data));
}

template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols>::basic_matrix(T (&& values)[Rows][Cols]) {
    data = values;
}


/* member functions */

template<typename T, std::size_t Rows, std::size_t Cols>
T& mm::basic_matrix<T, Rows, Cols>::at(std::size_t row, std::size_t col) {
    static_assert(row < Rows, "out of row bound");
    static_assert(col < Cols, "out of column bound");

    return data[row][col];
}

template<typename T, std::size_t Rows, std::size_t Cols>
auto&& mm::basic_matrix<T, Rows, Cols>::operator[](std::size_t index) {
    if constexpr (is_row_vec())
        return data[0][index];
    else if constexpr (is_col_vec())
        return data[index][0];

    return row_vec<T, Rows>(std::move(data[index]));
}

template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_rows(std::size_t x, std::size_t y) {
    if (x == y)
        return;

    for (int col = 0; col < Cols; col++)
        std::swap(data[x][col], data[y][col]);
}

template<typename T, std::size_t Rows, std::size_t Cols>
void mm::basic_matrix<T, Rows, Cols>::swap_cols(std::size_t x, std::size_t y) {
    if (x == y)
        return;

    for (int row = 0; row < rows; row++)
        std::swap(data[row][x], data[row][y]);
}

template<typename T, std::size_t M, std::size_t N>
mm::basic_matrix<T, N, M> mm::basic_matrix<T, M, N>::transposed() {
    mm::basic_matrix<T, N, M> result;

    for (int row = 0; row < M; row++)
        for (int col = 0; col < N; col++)
            result[row][col] = this[col][row];

    return result;
}


/* operator overloading */
template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator+(
    const mm::basic_matrix<T, Rows, Cols>& a,
    const mm::basic_matrix<T, Rows, Cols>& b
) {
    mm::basic_matrix<T, Rows, Cols> result;

    for (int row = 0; row < Rows; row++)
        for (int col = 0; col < Cols; col++)
            result.at(row, col) = a.at(row, col) + a.at(row, col);
    
    return result;
}

template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
    const mm::basic_matrix<T, Rows, Cols>& m,
    const T& scalar
) {
    mm::basic_matrix<T, Rows, Cols> result;
    for (int row = 0; row < Rows; row++)
        for (int col = 0; col < Cols; col++)
            result.at(row, col) = m.at(row, col) * scalar;

    return result;
}

template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator*(
    const T& scalar,
    const mm::basic_matrix<T, Rows, Cols>& m
) {
    return m * scalar;
}

template<typename T, std::size_t M, std::size_t P, std::size_t N>
mm::basic_matrix<T, M, N> operator*(
    const mm::basic_matrix<T, M, P>& a,
    const mm::basic_matrix<T, P, N>& b
) {
    mm::basic_matrix<T, M, N>  result;

    // TODO: use a more efficient algorithm
    for (int row = 0; row < M; row++)
        for (int col = 0; col < N; col++)
            for (int k = 0; k < P; k++)
                result.at(row, col) = a.at(row, k) * b.at(k, col);

    return result;
}


template<typename T, std::size_t Rows, std::size_t Cols>
mm::basic_matrix<T, Rows, Cols> operator-(
    const mm::basic_matrix<T, Rows, Cols>& a,
    const mm::basic_matrix<T, Rows, Cols>& b
) {
    return a + static_cast<T>(-1) * b;
}

template<typename T, std::size_t Rows, std::size_t Cols>
std::ostream& operator<<(std::ostream& os, const mm::basic_matrix<T, Rows, Cols>& m) {
    for (int row = 0; row < Rows; row++) {
        os << "[ ";
        for (int col = 0; col < (Cols -1); col++) {
            os << m.at(row, col);
        }
        os << m.at(Rows -1, Cols -1) << " ]\n";
    }

    return os;
}


/* square matrix specializaiton */

template<typename T, std::size_t N>
class mm::square_matrix : public mm::basic_matrix<T, N, N> {
public:
    /// in place transpose
    void transpose();  
    inline void tr() { transpose(); }

    /// in place inverse
    void invert();
};


template<typename T, std::size_t N>
void mm::square_matrix<T, N>::transpose() {
    for (int row = 0; row < N; row++)
        for (int col = 0; col < row; col++)
            std::swap(this->at(row, col), this->at(col, row));
}


/* row vector specialization */
template<typename T, std::size_t Rows>
class mm::row_vec : public mm::basic_matrix<T, Rows, 1> {
public:
};

/* column vector specialization */
template<typename T, std::size_t Cols>
class mm::col_vec : public mm::basic_matrix<T, 1, Cols> {
public:
};