summaryrefslogtreecommitdiffstats
path: root/mmvec.hpp
blob: 4bac658c24fe049b547f485fd2b78f59db6736c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/* mmvec.hpp
 * Part of Mathematical library built (ab)using Modern C++ 17 abstractions.
 *
 * This library is not intended to be _performant_, it does not contain
 * hand written SMID / SSE / AVX optimizations. It is instead an example
 * of highly abstracted code, where Vectors can contain any data type.
 *
 * As a challenge, the vector data structure has been built on a container
 * of static capacity. But if a dynamic base container is needed, the code
 * should be easily modifiable to add further abstraction, by templating
 * the container, and by consequence the allocator.
 *
 * Naoki Pross <naopross@thearcway.org>
 * 2018 ~ 2019
 */
#pragma once

#include <cassert>
#include <cmath>

#include <iostream>
#include <array>
#include <algorithm>
#include <numeric>
#include <complex>
#include <initializer_list>

namespace mm {
    // generic implementation
    template<typename T, std::size_t d>
    struct basic_vec;

    // usable specializations
    template<typename T, std::size_t d>
    struct vec;
    template<typename T>
    struct vec3;
    template<typename T>
    struct vec2;
}

template<typename T, std::size_t d>
struct mm::basic_vec : public std::array<T, d> {
    using type = T;
    static constexpr std::size_t dimensions = d;

    // TODO: template away these
    static constexpr T null_element = static_cast<T>(0);
    static constexpr T unit_element = static_cast<T>(1);
    static constexpr T unit_additive_inverse_element = static_cast<T>(-1);

    basic_vec();
    basic_vec(const std::initializer_list<T> l);
    template<std::size_t n> basic_vec(const basic_vec<T, n>& other);

    T length() const;

    template<std::size_t n>
    basic_vec<T, d>& operator=(const mm::basic_vec<T, n>& other);

    template<std::size_t n>
    basic_vec<T, d>& operator+=(const mm::basic_vec<T, n>& other);

    template<std::size_t n>
    basic_vec<T, d>& operator-=(const mm::basic_vec<T, n>& other);


    basic_vec<T, d>& operator*=(const T& scalar);
};


// member functions for basic_vec

template<typename T, std::size_t d>
mm::basic_vec<T, d>::basic_vec() : std::array<T, d>() {
    this->fill(basic_vec<T, d>::null_element);
}

template<typename T, std::size_t d>
mm::basic_vec<T, d>::basic_vec(const std::initializer_list<T> l) {
    // construct with empty values
    basic_vec();

    // why can't this sh*t be a constexpr with static_assert???
    assert(l.size() <= d);
    std::copy(l.begin(), l.end(), this->begin());
}

template<typename T, std::size_t d>
template<std::size_t n>
mm::basic_vec<T, d>::basic_vec(const mm::basic_vec<T, n>& other) {
    // construct with empty values
    basic_vec();
    // uses operator=
    *this = other;
}

template<typename T, std::size_t d>
T mm::basic_vec<T, d>::length() const {
    return std::sqrt(std::accumulate(this->begin(), this->end(),
        basic_vec<T, d>::null_element,
        [](const T& init, const T& val) -> T {
            return init + val * val;
        }
    ));
}


// memeber operator overloads for basic_vec

template<typename T, std::size_t d>
template<std::size_t n>
mm::basic_vec<T, d>& mm::basic_vec<T, d>::operator=(const mm::basic_vec<T, n>& other) {
    static_assert(
        d >= n, "cannot copy higher dimensional vector into a smaller one"
    );

    std::copy(other.begin(), other.end(), this->begin());

    return *this;
}

template<typename T, std::size_t d>
template<std::size_t n>
mm::basic_vec<T, d>& mm::basic_vec<T, d>::operator+=(const mm::basic_vec<T, n>& other) {
    *this = *this + other;
    return *this;
}

template<typename T, std::size_t d>
template<std::size_t n>
mm::basic_vec<T, d>& mm::basic_vec<T, d>::operator-=(const mm::basic_vec<T, n>& other) {
    *this = *this - other;
    return *this;
}

template<typename T, std::size_t d>
mm::basic_vec<T, d>& mm::basic_vec<T, d>::operator*=(const T& scalar) {
    *this = *this * scalar;
    return *this;
}


// operator overloads for basic_vec

template<typename T, std::size_t d>
mm::basic_vec<T, d> operator+(const mm::basic_vec<T, d>& rhs, const mm::basic_vec<T, d>& lhs) {
    mm::basic_vec<T, d> out;
    
    std::transform(rhs.begin(), rhs.end(), lhs.begin(), out.begin(),
        [](const T& r, const T& l) -> T {
            return r + l;
        }
    );

    return out;
}

template<typename T, std::size_t d>
mm::basic_vec<T, d> operator*(const mm::basic_vec<T, d>& rhs, const T& lhs) {
    return lhs * rhs;
}

template<typename T, std::size_t d>
mm::basic_vec<T, d> operator*(const T& rhs, const mm::basic_vec<T, d>& lhs) {
    mm::basic_vec<T, d> out;

    std::transform(lhs.begin(), lhs.end(), out.begin(), 
        [rhs](const T& t) -> T {
            return t * rhs;
    });

    return out;
}

template<typename T, std::size_t d>
mm::basic_vec<T, d> operator-(const mm::basic_vec<T, d>& rhs, const mm::basic_vec<T, d>& lhs) {
    return rhs + mm::basic_vec<T, d>::unit_additive_inverse_element * lhs;
}

template<typename T, std::size_t d>
T operator*(const mm::basic_vec<T, d>& rhs, const mm::basic_vec<T, d>& lhs) {
    return std::inner_product(rhs.begin(), rhs.end(), lhs.begin(), 0);
}

template<typename T, std::size_t d>
std::ostream& operator<<(std::ostream& os, const mm::basic_vec<T, d>& v) {
    os << "<";
    std::for_each(v.begin(), v.end() -1, [&](const T& el) {
        os << el << ", ";
    });
    os << v.back() << ">";

    return os;
}


// actual vectors to use in your code

template<typename T, std::size_t d>
class mm::vec: public mm::basic_vec<T, d> {
public:
    vec(std::initializer_list<T> l) : basic_vec<T, d>(l) {}

    template<std::size_t n>
    vec(const basic_vec<T, n>& other) : basic_vec<T, d>(other) {}
};


// three dimensional specialization with a static cross product
// TODO: specialize operator+ for spherical coordinates

template<typename T>
class mm::vec3 : public mm::basic_vec<T, 3> {
public:
    vec3() : basic_vec<T, 3>() {}
    vec3(std::initializer_list<T> l) : basic_vec<T, 3>(l) {}

    template<std::size_t n>
    vec3(const basic_vec<T, n>& other) : basic_vec<T, 3>(other) {}

    T& x() { return this->at(0); }
    T& y() { return this->at(1); }
    T& z() { return this->at(2); }

    const T& x() const { return this->at(0); }
    const T& y() const { return this->at(1); }
    const T& z() const { return this->at(2); }

    T zenith() const;
    T azimuth() const;
    vec3<T> spherical() const;

    static vec3<T> cross(const vec3<T>& rhs, const vec3<T>& lhs);
};

template<typename T>
T mm::vec3<T>::zenith() const {
    return std::acos(this->z() / this->length());
}

template<typename T>
T mm::vec3<T>::azimuth() const {
    return std::atan(this->y() / this->x());
}

template<typename T>
mm::vec3<T> mm::vec3<T>::spherical() const {
    return mm::vec3<T> {
        this->length(),
        this->zenith(),
        this->azimuth(),
    };
}

template<typename T>
mm::vec3<T> mm::vec3<T>::cross(const vec3<T>& rhs, const vec3<T>& lhs) {
    mm::vec3<T> res;

    res.x() = (rhs.y() * lhs.z()) - (rhs.z() * lhs.y());
    res.y() = (rhs.z() * lhs.x()) - (rhs.x() * lhs.z());
    res.z() = (rhs.x() * lhs.y()) - (rhs.y() * lhs.x());

    return res;
}


// two dimensional specialization with a polar conversion
// TODO: specialize operator+ for polar coordinates

template<typename T>
class mm::vec2: public mm::basic_vec<T, 2> {
public:
    vec2() : basic_vec<T, 2>() {}
    vec2(std::initializer_list<T> l) : basic_vec<T, 2>(l) {}

    template<std::size_t n>
    vec2(const basic_vec<T, n>& other) : basic_vec<T, 2>(other) {}

    T& x() { return this->at(0); }
    T& y() { return this->at(1); }

    const T& x() const { return this->at(0); }
    const T& y() const { return this->at(1); }

    T angle() const;
    vec2<T> polar() const;

    static vec3<T> cross(const vec2<T>& rhs, const vec2<T>& lhs);
};

template<typename T>
T mm::vec2<T>::angle() const {
    return std::atan(this->y() / this->x());
}

template<typename T>
mm::vec2<T> mm::vec2<T>::polar() const {
    return mm::vec2 {
        this->length(),
        this->angle()
    };
}

template<typename T>
mm::vec3<T> mm::vec2<T>::cross(const mm::vec2<T>& rhs, const mm::vec2<T>& lhs) {
    return mm::vec3<T>::cross(mm::vec3<T>(rhs), mm::vec3<T>(lhs));
}