summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorYanzhenXiangRobotics <xyz000327@gmail.com>2023-05-10 23:13:51 +0200
committerYanzhenXiangRobotics <xyz000327@gmail.com>2023-05-10 23:13:51 +0200
commitc5cdd03fc0588f7d34d8b97713caa6d19e5becea (patch)
tree37b4d81c124a07b23e2d626ad9501ed70b301d33
parentUpdate progress.md (diff)
downloadmpc_pe-c5cdd03fc0588f7d34d8b97713caa6d19e5becea.tar.gz
mpc_pe-c5cdd03fc0588f7d34d8b97713caa6d19e5becea.zip
ADD: pass task 25
-rwxr-xr-xtemplates/chebycenter.m20
-rwxr-xr-xtemplates/cprnd.m296
-rw-r--r--templates/generate_disturbances.m6
-rw-r--r--templates/generate_params_z.m1
-rw-r--r--templates/license.txt27
5 files changed, 350 insertions, 0 deletions
diff --git a/templates/chebycenter.m b/templates/chebycenter.m
new file mode 100755
index 0000000..cbdce1c
--- /dev/null
+++ b/templates/chebycenter.m
@@ -0,0 +1,20 @@
+function [c,r] = chebycenter(A,b)
+%CHEBYCENTER Compute Chebyshev center of polytope Ax <= b.
+% The Chebyshev center of a polytope is the center of the largest
+% hypersphere enclosed by the polytope.
+% Requires optimization toolbox.
+
+[n,p] = size(A);
+an = sqrt(sum(A.^2,2));
+A1 = zeros(n,p+1);
+A1(:,1:p) = A;
+A1(:,p+1) = an;
+f = zeros(p+1,1);
+f(p+1) = -1;
+
+options = optimset;
+options = optimset(options,'Display', 'off');
+c = linprog(f,A1,b,[],[],[],[],[],options);
+r = c(p+1);
+c = c(1:p);
+end
diff --git a/templates/cprnd.m b/templates/cprnd.m
new file mode 100755
index 0000000..4183ac3
--- /dev/null
+++ b/templates/cprnd.m
@@ -0,0 +1,296 @@
+function [X S] = cprnd(N,A,b,options)
+%CPRND Draw from the uniform distribution over a convex polytope.
+% X = cprnd(N,A,b) Returns an N-by-P matrix of random vectors drawn
+% from the uniform distribution over the interior of the polytope
+% defined by Ax <= b. A is a M-by-P matrix of constraint equation
+% coefficients. b is a M-by-1 vector of constraint equation
+% constants.
+%
+% cprnd(N,A,b,options) allows various options to be specified.
+
+% 'method' Specifies the algorithm. One of the strings 'gibbs',
+% 'hitandrun' (the default), and 'achr'. The default
+% algorithm 'hitandrun' is a vanilla hit-and-run sampler
+% [1]. 'gibbs' specifies a Gibbs sampler, 'achr' is the
+% Adaptive Centering Hit-and-Run algorithm of [2].
+%
+% 'x0' Vector x0 is a starting point which should be interior
+% to the polytope. If x0 is not supplied CPRND uses the
+% Chebyshev center as the initial point.
+%
+% 'isotropic' Perform an adaptive istropic transformation of the
+% polytope. The values 0, 1 and 2 respectively turn
+% off the transformation, construct it during a runup
+% period only, or continuously update the
+% tranformation throughout sample production. The
+% transformation makes sense only for the Gibbs and
+% Hit-and-run samplers (ACHR is invariant under
+% linear transformations).
+%
+% 'discard' Number of initial samples (post-runup) to discard.
+%
+% 'runup' When the method is gibbs or hitandrun and the
+% isotropic transformation is used, this is the
+% number of initial iterations of the algorithm in
+% the untransformed space. That is a sample of size
+% runup is generated and its covariance used as the
+% basis of a transformation.
+% When the method is achr runup is the number of
+% conventional hitandrun iterations. See [2].
+%
+% 'ortho' Zero/one flag. If turned on direction vectors for
+% the hitandrun algorithm are generated in random
+% orthonormal blocks rather than one by
+% one. Experimental and of dubious utility.
+%
+% 'quasi' Allows the user to specify a quasirandom number generator
+% (such as 'halton' or 'sobol'). Experimental and of
+% dubious utility.
+%
+%
+
+% By default CPRND employs the hit-and-run sampler which may
+% exhibit marked serial correlation and very long convergence times.
+%
+% References
+% [1] Kroese, D.P. and Taimre, T. and Botev, Z.I., "Handbook of Monte
+% Carlo Methods" (2011), pp. 240-244.
+% [2] Kaufman, David E. and Smith, Robert L., "Direction Choice for
+% Accelerated Convergence in Hit-and-Run Sampling", Op. Res. 46,
+% pp. 84-95.
+%
+% Copyright (c) 2011-2012 Tim J. Benham, School of Mathematics and Physics,
+% University of Queensland.
+
+ function y = stdize(z)
+ y = z/norm(z);
+ end
+
+ p = size(A,2); % dimension
+ m = size(A,1); % num constraint ineqs
+ x0 = [];
+ runup = []; % runup necessary to method
+ discard = []; % num initial pts discarded
+ quasi = 0;
+ method = 'achr';
+ orthogonal = 0;
+ isotropic = [];
+
+ % gendir generates a random unit (direction) vector.
+ gendir = @() stdize(randn(p,1));
+
+ % Alternative function ogendir forces directions to come in
+ % orthogonal bunches.
+ Ucache = {};
+ function u = ogendir()
+ if length(Ucache) == 0
+ u = stdize(randn(p,1));
+ m = null(u'); % orthonormal basis for nullspace
+ Ucache = mat2cell(m',ones(1,p-1));
+ else
+ u = Ucache{end}';
+ Ucache(end) = [];
+ end
+ end
+
+ % Check input arguments
+
+ if m < p+1
+ % obv a prob here
+ error('cprnd:obvprob',['At least ',num2str(p+1),' inequalities ' ...
+ 'required']);
+ end
+
+ if nargin == 4
+ if isstruct(options)
+
+ if isfield(options,'method')
+ method = lower(options.method);
+ switch method
+ case 'gibbs'
+ case 'hitandrun'
+ case 'achr'
+ otherwise
+ error('cprnd:badopt',...
+ ['The method option takes only the ' ...
+ 'values "gibbs", "hitandrun", and "ACHR".']);
+ end
+ end
+
+ if isfield(options,'isotropic')
+ % Controls application of isotropic transformation,
+ % which seems to help a lot.
+ isotropic = options.isotropic;
+ end
+
+ if isfield(options,'discard')
+ % num. of samples to discard
+ discard = options.discard;
+ end
+
+ if isfield(options,'quasi')
+ % Use quasi random numbers, which doesn't seem to
+ % help much.
+ quasi = options.quasi;
+ if quasi && ~ischar(quasi), quasi='halton'; end
+ if ~strcmp(quasi,'none')
+ qstr = qrandstream(quasi,p,'Skip',1);
+ gendir = @() stdize(norminv(qrand(qstr,1),0,1)');
+ end
+ end
+
+ if isfield(options,'x0')
+ % initial interior point
+ x0 = options.x0;
+ end
+
+ if isfield(options,'runup')
+ % number of points to generate before first output point
+ runup = options.runup;
+ end
+
+ if isfield(options,'ortho')
+ % Generate direction vectors in orthogonal
+ % groups. Seems to help a little.
+ orthogonal = options.ortho;
+ end
+
+ else
+ x0 = options; % legacy support
+ end
+ end
+
+ % Default and apply options
+
+ if isempty(isotropic)
+ if ~strcmp(method,'achr')
+ isotropic = 2;
+ else
+ isotropic = 0;
+ end
+ end
+
+ if orthogonal
+ gendir = @() ogendir();
+ end
+
+ % Choose a starting point x0 if user did not provide one.
+ if isempty(x0)
+ x0 = chebycenter(A,b); % prob. if p==1?
+ end
+
+ % Default the runup to something arbitrary.
+ if isempty(runup)
+ if strcmp(method,'achr')
+ runup = 10*(p+1);
+ elseif isotropic > 0
+ runup = 10*p*(p+1);
+ else
+ runup = 0;
+ end
+ end
+
+ % Default the discard to something arbitrary
+ if isempty(discard)
+ if strcmp(method,'achr')
+ discard = 25*(p+1);
+ else
+ discard = runup;
+ end
+ end
+
+ X = zeros(N+runup+discard,p);
+
+ n = 0; % num generated so far
+ x = x0;
+
+ % Initialize variables for keeping track of sample mean, covariance
+ % and isotropic transform.
+ M = zeros(p,1); % Incremental mean.
+ S2 = zeros(p,p); % Incremental sum of
+ % outer prodcts.
+ S = eye(p); T = eye(p); W = A;
+
+ while n < N+runup+discard
+ y = x;
+
+ % compute approximate stochastic transformation
+ if isotropic>0
+ if n == runup || (isotropic > 1 && n > runup)
+ T = chol(S,'lower');
+ W = A*T;
+ end
+ y = T\y;
+ end
+
+ switch method
+
+ case 'gibbs'
+ % choose p new components
+ for i = 1:p
+ % Find points where the line with the (p-1) components x_i
+ % fixed intersects the bounding polytope.
+ e = circshift(eye(p,1),i-1);
+ z = W*e;
+ c = (b - W*y)./z;
+ tmin = max(c(z<0)); tmax = min(c(z>0));
+ % choose a point on that line segment
+ y = y + (tmin+(tmax-tmin)*rand)*e;
+ end
+
+ case 'hitandrun'
+ % choose a direction
+ u = gendir();
+ % determine intersections of x + ut with the polytope
+ z = W*u;
+ c = (b - W*y)./z;
+ tmin = max(c(z<0)); tmax = min(c(z>0));
+ % choose a point on that line segment
+ y = y + (tmin+(tmax-tmin)*rand)*u;
+
+ case 'achr'
+ % test whether in runup or not
+ if n < runup
+ % same as hitandrun
+ u = gendir();
+ else
+ % choose a previous point at random
+ v = X(randi(n),:)';
+ % line sampling direction is from v to sample mean
+ u = (v-M)/norm(v-M);
+ end
+ % proceed as in hit and run
+ z = A*u;
+ c = (b - A*y)./z;
+ tmin = max(c(z<0)); tmax = min(c(z>0));
+ % Choose a random point on that line segment
+ y = y + (tmin+(tmax-tmin)*rand)*u;
+ end
+
+ if isotropic>0
+ x = T*y;
+ else
+ x = y;
+ end
+
+ X(n+1,:)=x';
+ n = n + 1;
+
+ % Incremental mean and covariance updates
+ delta0 = x - M; % delta new point wrt old mean
+ M = M + delta0/n; % sample mean
+ delta1 = x - M; % delta new point wrt new mean
+ if n > 1
+ S2 = S2 + (n-1)/(n*n)*delta0*delta0'...
+ + delta1*delta1';
+ S0 = S;
+ S = S2/(n-1); % sample covariance
+ else
+ S = eye(p);
+ end
+
+ end
+
+ X = X((discard+runup+1):(N+discard+runup),:);
+
+end
diff --git a/templates/generate_disturbances.m b/templates/generate_disturbances.m
index 570a4c9..f08cdb5 100644
--- a/templates/generate_disturbances.m
+++ b/templates/generate_disturbances.m
@@ -8,4 +8,10 @@
function Wt = generate_disturbances(params)
% YOUR CODE HERE
+ % params_z = generate_params_z(params);
+ Hw = params.constraints.DisturbanceMatrix;
+ hw = params.constraints.DisturbanceRHS;
+ % Pw = Polyhedron('A', Hw, 'b', hw);
+ N = params.model.HorizonLength;
+ Wt = cprnd(N,Hw,hw)';
end \ No newline at end of file
diff --git a/templates/generate_params_z.m b/templates/generate_params_z.m
index a7cfaa9..6d25f63 100644
--- a/templates/generate_params_z.m
+++ b/templates/generate_params_z.m
@@ -9,6 +9,7 @@
function [params_z] = generate_params_z(params)
% initialize params_z
params_z = params;
+% display(params.model);
% add initial condition of z-subsystem
params_z.model = rmfield(params_z.model,{'InitialConditionA', ...
diff --git a/templates/license.txt b/templates/license.txt
new file mode 100644
index 0000000..4d6117c
--- /dev/null
+++ b/templates/license.txt
@@ -0,0 +1,27 @@
+Copyright (c) 2011, Tim Benham
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the distribution
+ * Neither the name of the University of Queensland nor the names
+ of its contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.