%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright (c) 2023, Amon Lahr, Simon Muntwiler, Antoine Leeman & Fabian Flürenbrock Institute for Dynamic Systems and Control, ETH Zurich. % % All rights reserved. % % Please see the LICENSE file that has been included as part of this package. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% classdef MPC properties yalmip_optimizer end methods function obj = MPC(Q,R,N,params) nu = params.model.nu; nx = params.model.nx; % YOUR CODE HERE A=params.model.A; B=params.model.B; U = sdpvar(repmat(nu,1,N),ones(1,N),'full'); X = sdpvar(repmat(nx,1,N+1),ones(1,N+1),'full'); [K,P,~] = dlqr(A,B,Q,R); % s_max=params.constraints.MaxAbsPositionXZ; % y_max=params.constraints.MaxAbsPositionY; % u_max = params.constraints.MaxAbsThrust; H_x = params.constraints.StateMatrix; h_x = params.constraints.StateRHS; H_u = params.constraints.InputMatrix; h_u = params.constraints.InputRHS; X0 = sdpvar(nx,1,'full'); objective = 0; constraints = X{1} == X0; for k = 1:N constraints = [ ... constraints, ... X{k+1} == A*X{k} + B*U{k} , ... H_x * X{k} <= h_x, ... H_u * U{k} <= h_u ... ]; objective = objective + X{k}'*Q*X{k} + U{k}'*R*U{k}; end objective=objective+X{N+1}'*P*X{N+1}; % terminal constraint % constraints = [ ... % constraints, ... % X{N+1} == zeros(nx,1) % ]; opts = sdpsettings('verbose',1,'solver','quadprog'); obj.yalmip_optimizer = optimizer(constraints,objective,opts,X0,{U{1} objective}); end function [u, ctrl_info] = eval(obj,x) % evaluate control action by solving MPC problem tic; [optimizer_out,errorcode,~] = obj.yalmip_optimizer{x}; solvetime = toc; [u, objective] = optimizer_out{:}; feasible = true; if (errorcode ~= 0) feasible = false; end ctrl_info = struct('ctrl_feas',feasible,'objective',objective,'solvetime',solvetime); end end end