
Model Predictive Control Spring 2023
Prof. M. Zeilinger

Programming Exercise
Control for Spacecraft Rendezvous

Introduction

In this programming exercise, you are in charge of designing a controller for the approaching stage of
an orbital rendezvous maneuver, where one satellite approaches another object in space. During the
approaching stage, the control system shall steer the chaser satellite into the vicinity of the target.
Thereby, the control system should be robust against deviations of the chaser satellite’s initial
starting position, respect state and input constraints, as well as minimize overall fuel consumption.

Equations of motion

The dynamics of the chaser satellite are described in a moving coordinate frame centered at the
target object, which moves on a circular orbit. The resulting second-order ordinary differential
equations (ODEs) are the Clohessy-Wiltshire-Hill (CWH) equations,ẍ(t)ÿ(t)

z̈(t)

 =
2ωnẏ(t) + 3ω2nx(t)−2ωnẋ(t)

−ω2nz(t)

+ 1
m

ux(t)uy (t)

uz(t)

 , (1)

where x(t), y(t), z(t) ∈ R are the spatial coordinates radially outward, along the orbit track, and
along the orbital angular momentum vector of the chaser satellite relative to the target body,
respectively, as can be seen in Figure 1. The thrust of the chaser satellite in the relative coordinate
frame is given by the control inputs ux(t), uy (t), uz(t) ∈ R.

chaser

target

ex

ey

ezR

Figure 1: Chaser and target satellite in moving CWH frame.

The model is parametrized by the mass m := 300kg of the chaser and the orbital rate ωn :=
√
µ
R3

,

where µ := 3.986 · 1014m3s2 is the standard gravitational parameter and R = 7 · 106m is the radius
of the target orbit.

1

Constraints

Let

u(t) :=
[
ux(t) uy (t) uz(t)

]⊤ ∈ Rnu . (2)

The maximum absolute thrust that can be provided by the satellite in each component is limited,
i.e.,

∥u(t)∥∞ := max {|ux(t)|, |uy (t)|, |uz(t)|} ≤ umax, (3)

where umax := 1N. This set of polytopic constraints can be conveniently written as

Huu(t) ≤ hu, (4)

for some Hu ∈ R6×nu and hu ∈ R6.

Mission objective

The satellite is ejected from the carrier rocket at time T0 := 0s. We will investigate the approach
of the satellite from three different initial conditions which will be defined later. The controller
employed for the approaching stage should adhere to the following requirements:

• The fuel consumption should be minimized. As a surrogate for the fuel consumption in
the time interval [0, T], we use the L2 norm; for a piecewise constant input function u,
with u(τ) = u(k∆T) on the interval τ ∈ [k∆T, (k + 1)∆T) for all k = 0, . . . , Nt − 1 and
∆T · Nt = T , this results in

∥u∥L2(0,T) = ∆T

(
Nt−1∑
k=0

u(k∆T)⊤u(k∆T)

) 1
2

.

• The satellite should stay within its track limits to avoid collision risk and ensure the validity
of the linearized model. The state constraints are given as

−smax ≤ x(t) ≤ smax −ymax ≤ y(t) ≤ ymax −smax ≤ z(t) ≤ smax,

where smax := 105m confines the chaser perpendicular to the target’s orbital velocity and
ymax := 10

6m confines it along the orbital track. Analogously to the input constraints, the 6
constraints above can be compactly expressed as

Hxx(t) ≤ hx (5)

for some Hx ∈ R6×nx , hx ∈ R6 where

x(t) :=
[
x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)

]⊤ ∈ Rnx . (6)

• At final time Tf := 172800s (2 days), the distance and absolute velocity difference of the
chaser should not exceed df,max := 100m and vf,max := 1m/s, respectively, i.e.,

df :=
√
x(Tf)2 + y(Tf)2 + z(Tf)2 ≤ df,max, (7)

vf :=
√
ẋ(Tf)2 + ẏ(Tf)2 + ż(Tf)2 ≤ vf,max. (8)

2

Preliminaries

MATLAB

For this project, you need to have MATLAB R2022b installed, which you can download from
the ETH IT Shop1. Furthermore, the Control Systems Toolbox, the Optimization Toolbox, and
Simulink need to be installed. To prevent unexpected results, we strongly advise you to use ex-
actly this MATLAB version with a minimal installation of packages given by your MATLAB path
configuration.

Installation of MPT & Yalmip

We rely on the Multi-Parametric Toolbox (MPT) for set computations and Yalmip2 to setup MPC
controllers in Matlab.

To install MPT, complete the following instructions:

1. Go to https://www.mpt3.org/ and click on "Installation & updating instructions".

2. Download the file install_mpt3.m.

3. Run install_mpt3.m in MATLAB.

MPT automatically installs Yalmip.

Provided Files

The provided files of this project are structured in two subdirectories: templates/ and testing/.
Make sure to add the whole provided folder including all files and subdirectories to the MATLAB
path.

The subdirectory templates/ contains template files that serve as a basis for your implementa-
tion. Do not change the input-output structure of the provided functions when implementing your
solution. While most of the files are empty, below you find a more detailed description of a few
important files.

• generate_params.m (Function) — This function returns a struct (called params in the
following) containing parameters that are shared across most of the functions you implement
as part of this project. The fields of the params struct and their corresponding parameters
are detailed in Table 1.

• plot_trajectory.m (Function) — This function plots the state trajectories and constraints
of the satellite model. The inputs are given as state and input trajectories Xt , Ut , the struct
array ctrl_info as defined in Task 7, as well as params.

• plot_trajectory_z.m (Function) — This function plots the state trajectories and con-
straints of the decoupled z-subsystem of the satellite model. The inputs are as above, with
the redefined states and inputs from Task 26.

• You are provided with template files for the deliverables to be implemented by you. Below
each task described in the following, you will find a table that summarizes the corresponding
deliverables. More information about the functions can be found in the templates and their
respective task description.

1https://itshop.ethz.ch/
2https://yalmip.github.io/

3

Field Value

model.Mass m

model.GravitationalParameter µ

model.TargetRadius R

model.nx nx
model.nu nu
model.A A

model.B B

model.InitialConditionA xA0
model.InitialConditionB xB0
model.InitialConditionC xC0
model.HorizonLength Nt
model.ScalingMatrix V

model.TimeStep ∆T

constraints.InputMatrix Hu
constraints.InputRHS hu
constraints.MaxAbsPositionXZ smax
constraints.MaxAbsPositionY ymax
constraints.MaxAbsThrust umax
constraints.MaxFinalPosDiff df,max
constraints.MaxFinalVelDiff vf,max
constraints.StateMatrix Hx
constraints.StateRHS hx

Table 1: params struct of system parameters returned by the function generate_params.

The folder testing/ contains a number of encrypted MATLAB p-files to test your solution, as
well as the run_tests function. Usage of the testing framework is described in more detail in the
following.

Testing framework

In this programming exercise we make use of a testing framework. The framework serves two
main purposes: to provide you with feedback about your solution during development, and to
automatically grade your submission.

To facilitate testing of your submission, most deliverables are given in terms of functions, whose
input-output behavior is specified in the task description and verified by the testing framework.

To run the tests for all functions, run

test_struct = run_tests();

The testing framework is available for all submitted functions. We do not provide testing functions
for tasks where you have to write a script, i.e., Tasks 11, 23 and 31. To run the tests for one specific
function called "function_name" ("function_name" is a string, e.g., "generate_system_cont"),
run

test_struct = run_tests("function_name");

The output test_struct is a MATLAB struct whose fields are described in Table 2. Note that the
tests first check that the tests for any prerequisite functions pass. The testing framework may vary
all of the inputs of the function to be tested, so it is important to avoid hard-coding parameters
such as input and state dimensions etc. As an emphasizing remark, always use the parameters
available in the params struct in your implementation and do not or recompute or hard-code them.

4

Field Value

Deliverable The name of the tested function.
Info Short summary of the diagnosis. Passed tests are labeled "OK". If an er-

ror is caught during the execution of your function, it will display "ERROR:
<message>". If the output of your function does not match the expected value,
it shows "Failure: <message>".

TestResults An array of MATLAB TestResult objects, which you can explore for debugging.

Table 2: test_struct struct of test results returned by the function run_tests.

In case we (or you) find a bug inside the software framework, it might be necessary to update the
testing framework while you are working on the project. In this regard, we highly appreciate your
feedback and would like to encourage you to report bugs or unexpected behavior of the software
at the dedicated forum section "Programming Exercise - Questions" on Moodle. In any case,
the version of the testing framework used for grading will not be changed after the 12.05.22.
Afterwards, if the testing framework flags parts of your submission as incorrect and you would like
to insist on the correctness of your solution, you may write max. 2 pages report documenting
your code; that part of your submission will then be checked manually.

What you have to hand in

Up to three students are allowed to work together on the programming exercise. They will all
receive the same grade. As a group, you must read and understand the ETH plagiarism policy
here: http://www.plagiarism.ethz.ch/ - each submitted work will be tested for plagiarism.
You must download and fill out the Declaration of Originality, available at the same link. You are
not allowed to make this project description, template, or your solution publicly available.

Hand in a single zip-file, where the filename contains the ETH ID numbers ("xx-xxx-xx", including
dashes) of all team-members according to this template (note that there are no spaces in the
filename):

IDNumber1_IDNumber2_IDNumber3.zip.

The zip-file must contain the following files according to the exercises:

• Files corresponding to the deliverables summarized at the end of each tasks section. You will
be notified of missing MATLAB files when running the testing framework (see explanation
above).

• A MAT-file which contains the test_struct that is returned by the testing framework (see
the description of the testing framework above).

• A PDF file of a scan of the Declaration of Originality signed by all team-members.

• If applicable, a PDF file of your optional 2-page report (see the description of the testing
framework above).

5

All files should be placed at the highest level of the zip-folder and no other files or sub-folders
should be included in the zip-folder. The directory structure and naming of the files must follow
this template:

IDNumber1_IDNumber2_IDNumber3.zip
Declaration_of_Originality.pdf
test_struct.mat
Report.pdf (optional)
<All ".m" files>

The zip-file should be uploaded to Moodle in the Programming Exercise assignment area by just one
of the members of the group. The deadline for submission is 19.05.23, 23:59 h. Late submissions
will not be considered.

Simulation and self-study questions

Some of the questions are marked as simulation or self-study questions. While these types of
questions are ungraded, they are intended to guide your learning experience and test your broader
understanding beyond the pure implementation of the methods. Simulation questions encourage
you to test the developed methods in a setting where the differences between different control
methods become apparent. Self-study questions are of a more theoretic and experimental nature;
they serve as additional material to prepare you for the exam. We thus strongly recommend to
answer and discuss these questions in your group.

6

Tasks

In the following, you find the tasks and corresponding deliverables for this project.

System Modeling

Tasks

1. Rewrite the second-order ODE (1) as a first-order ODE of the form

ẋ(t) = Acx(t) + Bcu(t),

where x(t) and u(t) are defined as in equations (2) and (6). Implement a function called
generate_system_cont that takes the params struct as input and returns Ac , Bc . 2 pt.

2. Discretize the continuous-time ODE using an exact discretization with a sampling time of
∆T = 600s such that the resulting discrete-time dynamics are given by the difference equation

x̃d(k + 1) = Ãx̃d(k) + B̃ud(k), (9)

where x̃d(k) := x̃(∆T · k) and ud(k) := u(∆T · k). Implement your solution as a function
generate_system, that computes Ã, B̃ based on the continuous-time matrices Ac , Bc and
the params struct as inputs.
Hint: You can use the MATLAB function c2d. 2 pt.

3. For the problem to be numerically well-conditioned, the states are re-scaled with the following
transformation

xd(k) = V x̃d(k) (10)

where V = diag([10−6, 10−6, 10−6, 10−3, 10−3, 10−3]) = params.model.ScalingMatrix is
a diagonal scaling matrix. Implement a function generate_system_scaled, which takes as
inputs the matrices Ã, B̃, params and outputs A,B such that

xd(k + 1) = Axd(k) + Bud(k) (11)

describes the same dynamics as equation (9). Note that this transformation amounts to
changing the units of the state from [m;m/s] to [Mm; km/s]. All further exercises are
expressed in this new transformed units. For brevity, and with a slight abuse of notation, we
drop the subscript in the following and write x(k) and u(k) to refer to the discrete state and
input variables, respectively. 2 pt.

4. Find matrices Hu, Hx ∈ R6×nx , as well as vectors hu, hx ∈ R6 to express the state and input
constraints in the form of equations (4) and (5), respectively (in the transformed coordinates
corresponding to equation (10)). Implement a function generate_constraints, that takes
as input the parameter struct params and outputs Hu, hu, Hx , hx . 2 pt.

5. Modify the function generate_params to also compute A,B,Hu, hu, Hx , hx as part of its
execution (using the functions you implemented above) and add the corresponding fields as
defined in Table 1 to the output struct. The output of the function generate_params
should now exactly give a struct as specified in Table 1. 1 pt.

7

Task Function Inputs Outputs Pt.
1 generate_system_cont params Ac , Bc 2

2 generate_system Ac , Bc , params Ã, B̃ 2

3 generate_system_scaled Ã, B̃, params A,B 2

4 generate_constraints params Hu, hu, Hx , hx 2

5 generate_params (modify) params 1

Table 3: Deliverable summary "System modeling"

Unconstrained Optimal Control

The aim of the following tasks is to design a discrete-time infinite-horizon linear quadratic regulator
(LQR) that satisfies the mission requirements. The infinite-horizon LQR controller

u(k) := F∞x(k) (12)

is defined such that it minimizes the infinite-horizon quadratic cost

J∞(x(0)) :=

∞∑
k=0

x(k)⊤Qx(k) + u(k)⊤Ru(k), (13)

for some positive definite weighting matrices Q ∈ Rnx×nx and R ∈ Rnu×nu . As the mission require-
ments and constraints cannot be encoded directly, but rather have to follow from the choice of the
weights, the main difficulty is to find Q and R that lead to a satisfactory system response. There-
fore a parameter study is to be conducted. To simplify the parameter study, we define q ∈ Rnx×1,
q :=

[
qx qy qz qvx qvy qvz

]⊤
and choose3 the parametrization Q := diag(q)

and R = Inu . The parameter study is split into a set of subproblems that form the deliverables for
this task.

Tasks

6. Design an infinite-horizon LQR controller for given inputs Q and R. Implement your solution
as a class in the template file LQR.m. Note that the class template has two functions, the
constructor LQR(Q,R) and eval(x). For numerical efficiency, the feedback matrix F∞ should
only be computed at initialization once (in the constructor of the class) and stored as a class
property K := L∞. The class property can then be accessed at every call to the eval function,
which computes the feedback of the controller according to equation (12) without additional
computational overhead. Note that, in addition to the control action u, the eval function
also returns a struct ctrl_info containing additional information about the control output.
For the LQR controller, the ctrl_info struct has only one field, ctrl_feas, indicating the
feasibility of the control problem; it suffices to always set

ctrl_info.ctrl_feas = true.

For convenience, we have already added the eval function to the template LQR.m. More
details can be found in the template file. 2 pt.

7. Simulate the closed-loop system for a given initial condition x(0), controller object ctrl
and number of time steps Nt . Implement your solution in the function simulate, which

3Note that the selection of R = Inu is not restrictive since scaling the infinite-horizon cost does not change its
minimizer. The restriction here is mainly introduced by assuming diagonal weight terms, i.e., no coupling of the
different states or inputs in the cost.

8

takes x(0), ctrl, params as inputs and outputs the closed-loop trajectory according to equa-
tion (11) in terms of the matrices Xt ∈ Rnx×(Nt+1), Ut ∈ Rnu×Nt , with

Xt :=
[
x(0) . . . x(Nt)

]
, Ut :=

[
u(0) . . . u(Nt − 1)

]
, (14)

as well as an Nt-dimensional array of the ctrl_info structs described in Task 6. Note
that the simulation should explicitly not include saturation of the inputs, i.e., compute the
evolution of the linear system according to the raw input of the feedback controller. 2 pt.

8. [Simulation]: Experiment with different values of the parameters in q. What is their effect
on the resulting closed-loop trajectory with initial condition xA0 (see Table 1)? You can use
the provided function plot_trajectory to visualize your results.

9. Check the satisfaction of the constraints for a given trajectory. Implement a function called
traj_constraints, that takes as input the trajectory data Xt , Ut and computes as outputs

• the maximum absolute value of both x(k) and z(k), s(i)max := max
k∈[0,Nt]

max{|x(k)|, |z(k)|},

• the maximum absolute value of y , y (i)max := maxk∈[0,Nt] |y(k)|,

• the maximum absolute value of the applied thrust, u(i)max := maxk∈[0,Nt−1] ∥u(k)∥∞,

• the closed-loop finite horizon input cost, J(i)u :=
∑Nt−1
k=0 u(k)

⊤u(k),

• the distance from the target position at Tf, see equation (7),

• the absolute difference from the target velocity, see equation (8),

• a boolean flag traj_feas(i) indicating the feasibility of the trajectory, i.e., traj_feas(i) =
true if and only if

s
(i)
max ≤ smax, y

(i)
max ≤ ymax, u

(i)
max ≤ umax, d

(i)
f ≤ df,max, v

(i)
f ≤ vf,max. (15)

3 pt.

10. Perform a parameter study to find a good choice for q. Implement a function lqr_tuning,
which takes as input an initial state x(0) ∈ Rnx , as well as an array of parameter vec-
tors Q ∈ Rnx×M , Q :=

[
q(1) . . . q(M)

]
, and outputs an M-dimensional array of structs

tuning_struct. Each element tuning_struct(i) should contain the following fields:

Field Value
InitialCondition x0
Qdiag q(i)

MaxAbsPositionXZ s
(i)
max

MaxAbsPositionY y
(i)
max

MaxAbsThrust u
(i)
max

InputCost J
(i)
u

MaxFinalPosDiff d
(i)
f

MaxFinalVelDiff v
(i)
f

TrajFeasible traj_feas(i)

Table 4: Fields of tuning_struct(i)

The second output argument of the function shall be the index iopt ∈ {1, . . .M}, which
corresponds to the index of the LQR controller that is feasible and requires the lowest amount
of fuel, i.e., iopt := argmin

i

{
J
(i)
u

∣∣∣ traj_feas(i) = true
}

. If there exists no feasible LQR

controller, the function should set iopt := nan. 3 pt.

9

11. Use the function lqr_tuning you implemented above to identify a parameter vector q,
such that the corresponding LQR controller is feasible and has a low input cost Ju ≤ 8 for
the initial condition xA0 . Provide a script file lqr_tuning_script.m which performs the
parameter study and finally sets the parameter q := q corresponding to the best controller
parametrization. Save the variable q, as well as the tuning_struct of your parameter study
in the MAT-file lqr_tuning_script.mat. Use the naming convention specified in Table 6.
Hint 1: Consider searching in the vicinity of the parameters we provide in the next section,
and using the MATLAB function ndgrid to get efficient parameter samples for the input
matrix Q. You might have to perform several rounds of tuning and refine your sampling grid
iteratively to arrive at a satisfactory solution.
Hint 2: Note that the "in-plane" dynamics of the x, y -coordinates are decoupled from the
"out-of-plane" dynamics of the z-coordinate. This means you can perform the tuning with
respect to the parameters qx , qy , qvx , qvy separately from the tuning for the parameters
qz , qvz . 2 pt.

12. [Simulation]: Simulate the closed-loop system with the LQR controller obtained in Deliver-
able 11, starting from the initial condition xB0 . Is your controller still feasible?

Task Function Inputs Outputs Pt.
6 LQR Q, R, params ctrl (LQR object) 2

6 LQR/eval x u, ctrl_info 0

7 simulate x0, ctrl, params Xt , Ut , ctrl_info 2

9 traj_constraints Xt , Ut , params s
(i)
max, y

(i)
max, u

(i)
max, J

(i)
u , d (i)f ,

v
(i)
f , traj_feas(i)

3

10 lqr_tuning x0, Q, params tuning_struct, iopt 3

11 lqr_tuning_script - lqr_tuning_script.mat 2

Table 5: Deliverable summary "Unconstrained Optimal Control"

Name Variable
q Parameter q corresponding to the best controller parametrization
tuning_struct Array of structs of your parameter study (output of the lqr_tuning function)

Table 6: Naming convention for lqr_tuning_script.m and lqr_tuning_script.mat

10

From LQR to MPC

After designing the unconstrained optimal controller, in this section you will design a first simple
model predictive controller. In MPC, the control sequence U := {u0, . . . uN−1} is computed as the
solution of an optimization problem over a prediction horizon of N steps. Feedback is introduced
by only applying the first element of the sequence, u(0) := u0; in the next time step, the optimal
input sequence is recomputed based on updated state measurements. Note that we write predicted
control inputs with a lower subscript, e.g., u0, to differentiate them from the implemented control
inputs u(0). The notation of the states is chosen analogously.

For the following exercises, we use Q∗ := diag(q∗) and R∗ := Inu , with

q∗ :=

q∗x
q∗y
q∗z
q∗vx
q∗vy
q∗vz

 :=

94.0

0.1579

300

0.01

0.10

0.10

 .

Nevertheless, feel free to also experiment with your best values obtained from the LQR controller
tuning and see how it affects the MPC closed-loop performance.

Tasks

13. Explicitly compute the maximum positively invariant set XLQR under application of the LQR
controller, i.e., the set of initial conditions for which the closed-loop system under the LQR
controller satisfies state and input constraints for all times. Let xLQR(k) and uLQR(k),
k = 0, . . . ,∞ be the infinite-horizon closed-loop state and input sequence resulting from
application of the LQR controller (12) to system (11), for some initial condition xLQR(0) =
x(0). Then, the set XLQR is defined by

XLQR := {x | xLQR(0) = x , HxxLQR(k) ≤ hx , HuuLQR(k) ≤ hu for all k ≥ 0}. (16a)

Implement a function lqr_maxPI, which takes as inputs Q,R, params and computes XLQR
in terms of polytopic constraints, i.e., returns H ∈ RnH×nx and h ∈ RnH such that XLQR =
{x |Hx ≤ h}.
Hint: You can use the MPT toolbox for this task. 3 pt.

14. [Self-study]: Check whether xA0 , xB0 , and xC0 are contained in XLQR. What can you con-
clude from the result with respect to state and input constraint satisfaction under the LQR
controller for these initial conditions?

15. Implement a function traj_cost that takes as input arguments Q ∈ Rnx×nx , R ∈ Rnu×nu ,
as well as trajectory data Xt , Ut as in equation (14) and outputs the closed-loop quadratic
cost for a given trajectory, i.e.,

JNt :=

Nt−1∑
k=0

x(k)⊤Qx(k) + u(k)⊤Ru(k)

1 pt.

11

16. Implement a model predictive controller that solves the open-loop optimization problem

min
U

N−1∑
i=0

x⊤i Qxi + u
⊤
i Rui + lf(xN) (17a)

s.t. x0 = x(k) (17b)

xi+1 = Axi + Bui , i = 0, . . . , N − 1 (17c)

Hxxi ≤ hx , i = 0, . . . , N (17d)

Huui ≤ hu, i = 0, . . . , N − 1 (17e)

at each time step, where lf(x) = J∞(x) is equal to the LQR infinite-horizon cost (13). As for
the LQR controller, implement the model predictive controller as a class MPC, which creates a
YALMIP solver object during initialization with Q,R,N, and solves the optimization problem
in the eval method. Note that in this case, at each call of eval the ctrl_info struct has
two additional fields: ctrl_info.objective, which should contain the value of the objective
function for the optimizer U∗ of (17), and ctrl_info.solvetime, which should contain the
time required to solve the problem (17). Again, we have provided you with the full eval
method. More details can be found in the template file.
Hint 1: The LQR infinite-horizon cost is of the form J∞(x) = x⊤P x , where P ∈ Rnx×nx is
a constant matrix that can be computed during the initialization of the controller.
Hint 2: You can use the MATLAB functions tic and toc to get an estimate of the required
solve time. 5 pt.

17. [Simulation]: Simulate the closed-loop system starting from xA0 with the LQR and the model
predictive controller for the same choice of Q := Q∗, R := R∗ and with N := 30. Do the
same with xB0 as initial condition. How do the controllers perform with respect to closed-loop
constraint satisfaction and closed-loop cost?

Task Function Inputs Outputs Pt.
13 lqr_maxPI Q, R, params H, h 3

15 traj_cost Xt , Ut , Q, R JN 1

16 MPC Q, R, N, params ctrl (MPC object) 5

16 MPC/eval x u, ctrl_info 0

Table 7: Deliverable summary "From LQR to MPC"

12

MPC with theoretical closed-loop guarantees

In this part, the task is to formulate a model predictive controller that provides guaranteed closed-
loop state and input constraint satisfaction and renders the origin an asymptotically stable equilib-
rium point of the closed-loop system.

Tasks

18. Implement a model predictive controller based on the MPC problem

min
U

N−1∑
i=0

x⊤i Qxi + u
⊤
i Rui (18a)

s.t. x0 = x(k) (18b)

xi+1 = Axi + Bui , i = 0, . . . , N − 1 (18c)

Hxxi ≤ hx , i = 0, . . . , N (18d)

Huui ≤ hu, i = 0, . . . , N − 1 (18e)

xN = 0, (18f)

in the class template MPC_TE, with the same input arguments as the MPC class. 2 pt.

19. [Self-study]: Why is the origin an asymptotically stable equilibrium point for the resulting
closed-loop system, given that (18) is feasible for x(0)?

20. Implement another model predictive controller based on the MPC problem

min
U

N−1∑
i=0

x⊤i Qxi + u
⊤
i Rui + lf(xN) (19a)

s.t. x0 = x(k) (19b)

xi+1 = Axi + Bui , i = 0, . . . , N − 1 (19c)

Hxxi ≤ hx , i = 0, . . . , N (19d)

Huui ≤ hu, i = 0, . . . , N − 1 (19e)

xN ∈ XLQR, (19f)

in the class template MPC_TS, where lf(x) := J∞(x) is the LQR infinite-horizon cost and
XLQR from equation (16) is given in terms of H and h as outlined in Deliverable 13. Note
that the class is initialized with the additional input arguments H and h, hence XLQR has to
be computed outside of the class. 2 pt.

21. [Simulation]: Simulate the closed-loop system with the three MPCs (17), (18), (19) starting
from xA0 for the same choice of Q := Q∗, R := R∗ and horizon length N = 30 and compare
them in terms of the feasibility of the open-loop optimization problems, as well as their
constraint satisfaction and cost in closed-loop. Test also different horizon lengths N =
40 . . . 20. What do you observe?

13

Task Function Inputs Outputs Pt.
18 MPC_TE Q, R, N, params ctrl (MPC_TE object) 2

18 MPC_TE/eval x u, ctrl_info 0

20 MPC_TS Q, R, N, H, h, params ctrl (MPC_TS object) 2

20 MPC_TS/eval x u, ctrl_info 0

Table 8: Deliverable summary "MPC with theoretical closed-loop guarantees"

Soft constraints

In practical implementations, model predictive controllers such as (19) can become infeasible despite
the provided theoretical guarantees, for instance due to unmodeled disturbances or model mismatch.
This problem can be addressed by using soft constraints, providing a recovery mechanism given
that the original problem is infeasible. Your task is to design a soft-constrained model predictive
controller, which provides the same control inputs as (19), if (19) is feasible, but may provide a
feasible solution even when (19) is infeasible.

Tasks

22. Introduce slack variables ϵi ∈ R6, i = 0, . . . , N, into the MPC problem (19) to restore
feasibility in the case of state constraint violations. Implement a model predictive controller
based on the MPC problem

min
U

N−1∑
i=0

x⊤i Qxi + u
⊤
i Rui + lf(xN) +

N∑
i=0

ϵ⊤i Sϵi + v∥ϵi∥∞ (20a)

s.t. x0 = x(k) (20b)

xi+1 = Axi + Bui , i = 0, . . . , N − 1 (20c)

Hxxi ≤ hx + ϵi , i = 0, . . . , N (20d)

Huui ≤ hu i = 0, . . . , N − 1 (20e)

ϵi ≥ 0, i = 0, . . . , N (20f)

xN ∈ XLQR (20g)

in the class MPC_TS_SC. The class shall be initialized with the same parameters as MPC_TS,
plus the additional values for S ∈ R6×6 and v ∈ R for the constraint violation penalty with
v ≫ 0. 4 pt.

23. Choose S and v such that the controller based on the soft-constrained MPC problem (20)
returns the same control input values as the controller based on the MPC problem (19),
whenever (19) is feasible, for the same choice of weighting matrices Q∗, R∗ and horizon length
N = 30. Verify your selection in simulation by writing a script called MPC_TS_SC_script.m.
Provide the script and save your selected values in the MAT-file MPC_TS_SC_params.mat.
Use the naming convention specified in Table 10. 2 pt.

24. [Simulation]: Repeat the simulation for the initial condition xC0 and experiment with different
values for S and v in the soft-constrained formulation (20). How does the choice of S and
v influence the closed-loop behavior?

14

Task Function Inputs Outputs Pt.
22 MPC_TS_SC Q, R, N, H, h, S, v , params ctrl (MPC_TS_SC object) 4

22 MPC_TS/eval x u, ctrl_info 0

23 MPC_TS_SC_script - MPC_TS_SC_params.mat 2

Table 9: Deliverable summary "Soft constraints"

Name Variable
S Selected value for variable S
v Selected value for variable v

Table 10: Naming convention for MPC_TS_SC_script.m and MPC_TS_SC_params.mat

Robust MPC

If we want to ensure satisfaction of constraints even under uncertain model descriptions, such
as model mismatch or unmodeled disturbances, we can use a robust MPC approach. In the
given robust MPC task, we just consider the (decoupled) subsystem in z-direction of the overall
system (11) after applying the transform (10). Consequently, we consider the following uncertain
system

xz(k + 1) = Azxz(k) + Bzuz(k) + w(k), (21)

where xz(k) =
[
z(k) vz(k)

]⊤ ∈ R2, uz(k) ∈ R, and the disturbance w(k) ∈ R2 models the
uncertainty in the system. The disturbances are constrained to Hww(k) ≤ hw for all time steps k
with

Hw :=

1 0

−1 0

0 1

0 −1

 , hw := wmax ·

1

1

1

1

 , (22)

where wmax := 10−4.

We provided you with the function generate_params_z which takes as an input your params
struct and provides the struct params_z, in which A, B, nx , nu, Hx , hx , Hu, and hu are adapted
to represent the uncertain subsystem in z-direction (21). To keep notation simple and for your
reference in the implementation, we redefine nx := 2, nu := 1; for the updated values of the other
variables, please refer to the provided function generate_params_z. Note that the redefined
variables should not affect your implementation, which should work for either set of variables (as
long as the dimensions match). The initial conditions xA0 , xB0 , and xC0 are removed, and the initial
condition xAz,0 is added. Additionally, the function generate_params_z adds the fields shown in
Table 11 to the params_z struct to represent the constraints on the disturbances (22).

Field Value

model.InitialConditionA_z xAz,0
constraints.DisturbanceMatrix Hw
constraints.DisturbanceRHS hw
constraints.MaxAbsDisturbance wmax

Table 11: Fields added to params_z struct by the function generate_params_z.

15

Tasks

25. Sample a sequence Wt of Nt disturbance vectors w(k), i.e.,

Wt :=
[
w(0) . . . w(Nt − 1)

]
.

Thereby, each disturbance vector w(k), k = 0, . . . , Nt − 1, should be sampled from a uni-
form probability distribution defined on the polytope {w ∈ Rnx |Hww ≤ hw}. Implement a
function generate_disturbances that takes params_z as input and outputs Wt . 1 pt.

26. Simulate the closed-loop system (21) in the presence of additive disturbances. Adapt the
simulation function developed in Task 7 to implement a function simulate_uncertain,
which takes as inputs x0, ctrl, Wt , params_z, and outputs Xt , Ut , and the Nt-dimensional
struct ctrl_info just as in Task 7, but this time for the uncertain system model (21). 1 pt.

The following tasks lead you through the design of a tube-based robust MPC controller4 of the
form

min
Z,V
lf(zN) +

N−1∑
i=0

z⊤i Qzi + v
⊤
i Rvi (23a)

s.t. x(k) ∈ z0 ⊕ E (23b)

zi+1 = Azi + Bvi , i = 0, . . . , N − 1 (23c)

zi ∈ Xz ⊖ E , i = 0, . . . , N (23d)

vi ∈ Uz ⊖KtubeE , i = 0, . . . , N − 1 (23e)

zN ∈ XN , (23f)

where Z := {z0, . . . zN} and V := {v0, . . . vN−1} define a sequence of nominal states and inputs, E
is a robust positively invariant set5, Ktube a stabilizing linear feedback controller for system (21),
and Xz = {xz ∈ Rnx |Hxxz ≤ hx} and Uz = {uz ∈ Rnu |Huuz ≤ hu} denote the polytopic state
and input constraints. At each time step k , the following control input is applied to the system:

uz(k) = κtube(xz(k)) = v
∗
0 +Ktube(xz(k)− z∗0). (24)

27. In this task, design a stabilizing linear feedback controller uz(k) = Ktubexz(k) with Ktube ∈
Rnx×nu for system (21) using pole placement. Implement a function compute_tube_controller
that takes an array of poles p =

[
p1 p2

]
with p1, p2 ∈ C as an input, and outputs the feed-

back matrix of the tube controller, Ktube.
Hint: Use the MATLAB function place. 1 pt.

28. Compute the polytopic tube

E := {xz ∈ Rnx |Htubexz ≤ htube}

used in the MPC problem (23) as the minimal robust positive invariant (RPI) set for sys-
tem (21) under the tube controller designed in Task (27). In a function compute_minRPI,
implement the algorithm given in the MPC lecture slides5 to obtain the polytopic tube E in
dependence of the inputs Ktube and params. The outputs of the function are given as Htube,
htube, niter, where niter is the number of iterations after which the algorithm has converged,
i.e., niter := i , such that Ei+1 = Ei .
Hint 1: To check convergence of your algorithm you can use eq(Ei+1, Ei) after reducing the
polytopes to a minimal representation, e.g., by using the function Polyhedron.minHRep().
Hint 2: If your algorithm takes long to converge, consider choosing different poles p to design
your tube controller Ktube. 3 pt.

4Lec. 9, Robust MPC, Tube-MPC Problem Formulation
5Lec. 9, Robust MPC, Minimum Robust Invariant Set

16

29. Obtain the tightened constraints as defined in the MPC problem (23). Let Hx , hx , Hu, and
hu define the polytopic constraints for the system (21) as given in params_z. Implement a
function compute_tightening, which takes params_z as input and adapts the parameters
Hx , hx , Hu, and hu to represent the tightened constraints in (23d) and (23e). The output
is then given by the modified struct params_z_tube. 3 pt.

30. Implement the tube-based robust model predictive controller (23) in the class MPC_TUBE.
Design the terminal cost lf (x) as the LQR infinite-horizon cost (13) of the nominal system,
i.e., system (21) without disturbances w(k). During initialization of the class, a YALMIP
solver object representing the optimization problem (23) needs to be created based on the
inputs Q, R, N, the polytopic terminal set described by HN and hN , the polytopic tube E
described by Htube, htube, the tube controller Ktube, as well as the system model with tightened
constraints in the struct params_z_tube. The eval method should solve the optimization
problem and obtain the control input according to (24). 4 pt.

31. Let Q = diag(q∗z , q
∗
vz), R = 1, N = 50, and choose p =

[
0.05 0.1

]
to design the tube con-

troller Ktube using the function designed in Task 27. Design the tube E as outlined in Task 28
and obtain tightened constraints as outlined in Task 29. Using the function lqr_maxPI with
an appropriate choice of inputs, design the terminal set XN such that the resulting con-
troller is recursively feasible and robustly stable. Write the design of all ingredients and
the setup of the resulting MPC_TUBE controller in a script called called MPC_TUBE_script.m.
Provide the script and save the following variables in the MAT-file MPC_TUBE_params.mat:
p := p, K_tube := Ktube, H_tube := Htube, h_tube := htube, H_N := HN , h_N := hN , and
params_z_tube. Use the naming convention specified in Table 13. 2 pt.

32. [Simulation]: Sample different disturbance sequences Wt and simulate the MPC-TUBE con-
troller obtained in Task 31 using your function simulate_uncertain for initial condition xAz,0.
Compare your MPC-TUBE controller against applying the MPC-TS controller implemented
in Task 20 based on the system defined in params_z with N = 50. Plot the closed-loop
trajectories using the function plot_trajectory_z. What can you observe? What can you
observe if you apply the maximum disturbance at each time step, i.e., w(k) =

[
wmax wmax

]⊤
for all time steps k?

Task Function Inputs Outputs Pt.
25 generate_disturbances params_z Wt 1

26 simulate_uncertain x0, ctrl, Wt , params_z Xt , Ut , ctrl_info 1

27 compute_tube_controller p, params_z Ktube 1

28 compute_minRPI Ktube, params_z Htube, htube, niter 3

29 compute_tightening Ktube,Htube, htube,
params_z

params_z_tube 3

30 MPC_TUBE Q, R, N, HN , hN ,Htube, ctrl (MPC_TUBE object) 4

htube,Ktube,params_z_tube
30 MPC_TUBE/eval x u, ctrl_info 1

31 MPC_TUBE_script - MPC_TUBE_params.mat 2

Table 12: Deliverable summary "Robust MPC"

17

Name Variable
p p

K_tube Ktube
H_tube Htube
h_tube htube
H_N HN
h_N hN
params_z_tube Output of compute_tightening

Table 13: Variable naming convention for MPC_TUBE_params.mat

FORCES Pro [Bonus]

[Bonus] It is possible to get full points in the programming exercise without solving this question.

In order to deploy your controller on the real system you are usually required to implement the
model predictive controller on low-cost embedded hardware. To this end, it is important to ensure
computational efficiency and to implement the model predictive controller using a low-level language
like C or a code generator. FORCES Pro is a code generator that is compatible with any embedded
platform having a C compiler.

Installation: You should have received an email from Embotech.com regarding FORCES Pro.
Please contact us if you did not. Please follow the outlined instructions for download and installa-
tion. Note that the license will expire after the programming exercise deadline.

In the following tasks, we again consider the 6-dimensional system (11).

Deliverables

33. [Bonus] In the class template MPC_TE_forces, implement the model predictive controller (18)
from Task 18 using the Forces Pro solver. The input and output arguments should be the
same as for the MPC class implemented in Task 18. 2 pt.

34. [Simulation]: Simulate the closed-loop system with both, MPC_TE_forces and MPC_TE as
implemented in Task 18. Use the initial condition xA0 for the same choice of Q := Q∗,
R := R∗ and horizon length N = 30 and compare the results. Investigate the difference
in solve time between the two implementations of the MPC controller (18). What do you
observe?

Hint: The solve time used by the FORCES Pro solver is provided in info.solvetime.

Task Function Inputs Outputs Pt.
33 MPC_TE_forces Q, R, N, params ctrl (MPC_TE_forces object) 2

33 MPC_TE_forces/eval x u, ctrl_info 0

Table 14: Deliverable summary "FORCES Pro [Bonus]"

18

