diff options
author | Nao Pross <np@0hm.ch> | 2024-03-03 18:33:39 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-03-03 18:34:06 +0100 |
commit | 3d9396e5d166349eb052966ec623b86e2e82ac60 (patch) | |
tree | 291ac6216ffbaa2dc3e62eebc7741ba8646428af /README.md | |
parent | Extend Expr.replace() to work with any expression (diff) | |
download | mdpoly-3d9396e5d166349eb052966ec623b86e2e82ac60.tar.gz mdpoly-3d9396e5d166349eb052966ec623b86e2e82ac60.zip |
Update README, switch to reStructuredText
Diffstat (limited to '')
-rw-r--r-- | README.md | 57 |
1 files changed, 0 insertions, 57 deletions
diff --git a/README.md b/README.md deleted file mode 100644 index 7bd2f0c..0000000 --- a/README.md +++ /dev/null @@ -1,57 +0,0 @@ -# `mdpoly` Multidimensional Polynomials - -Work in progress! - -## Quick Start - -There is still a big part of the API missing but the snipped below works enough -to give an overview. - -```python -from mdpoly import State, Variable, Parameter -from mdpoly.representations import SparseRepr - -# Construct an expression -x, y = Variable.from_names("x, y") # or just Variable("x") -k = Parameter("k") - -p = (x + 2 * y) ** 3 + y ** 2 + k -print(f"{p = }") - -# Make a concrete representation -state = State(parameters={k: 3.14}) # try to replace with empty dict -sparse, state = p.to_repr(SparseRepr, state) - -# Look inside the representation -for entry in sparse.entries(): - print(f"at (row, col) = {entry.row, entry.col} there is a polynomial:") - for term in sparse.terms(entry): - monomial_str = "" - for idx in term: - var = state.from_index(idx.var_idx) - monomial_str += f"{var.name}^{idx.power} " - - # Get the coefficient - coeff = sparse.at(entry, term) - print(" - the monomial", monomial_str, "has coefficient", coeff) - -# You can also simply iterate over it -for entry, term, coeff in sparse: - print(entry, term, coeff) -``` - -There is some advanced stuff that is still broken but the idea is that it will -work soon (TM) - -``` -from mdpoly import Variable, MatrixVariable -from mdpoly.types import Shape - -x = Variable("x") -V = MatrixVariable("Q", Shape.column(3)) - -print(x.shape, V.shape) - -z = x + V # error -scalar = V.T @ V # no error (TODO) -``` |