aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--mdpoly/__init__.py14
-rw-r--r--mdpoly/abc.py21
-rw-r--r--mdpoly/algebra.py701
-rw-r--r--mdpoly/errors.py3
-rw-r--r--mdpoly/expressions/__init__.py66
-rw-r--r--mdpoly/expressions/matrix.py175
-rw-r--r--mdpoly/expressions/poly.py169
-rw-r--r--mdpoly/index.py13
-rw-r--r--mdpoly/operations/__init__.py0
-rw-r--r--mdpoly/operations/add.py81
-rw-r--r--mdpoly/operations/derivative.py62
-rw-r--r--mdpoly/operations/exp.py52
-rw-r--r--mdpoly/operations/mul.py186
-rw-r--r--mdpoly/operations/transpose.py20
-rw-r--r--mdpoly/representations.py12
-rw-r--r--mdpoly/state.py1
-rw-r--r--mdpoly/util.py9
17 files changed, 854 insertions, 731 deletions
diff --git a/mdpoly/__init__.py b/mdpoly/__init__.py
index 15ab8c9..1ac17a5 100644
--- a/mdpoly/__init__.py
+++ b/mdpoly/__init__.py
@@ -61,9 +61,9 @@ Expression
Within the code, we will often call something like :math:`x^2 + 1` and
*expression* (for example :py:class:`mdpoly.abc.Expr` or
-:py:class:`mdpoly.algebra.PolyRingExpr`) instead of polynomial. Expressions are
-more general and can include any mathematical operation. Of course in the end
-and expression should result in a polynomial.
+:py:class:`mdpoly.expressions.poly.PolyRingExpr`) instead of polynomial.
+Expressions are more general and can include any mathematical operation. Of
+course in the end and expression should result in a polynomial.
Decision Variables, Program
@@ -107,12 +107,8 @@ TODO: data structure(s) that represent the polynomial
from .abc import (Shape as _Shape)
-from .algebra import (PolyConst as _PolyConst,
- PolyVar as _PolyVar,
- PolyParam as _PolyParam,
- MatConst as _MatConst,
- MatVar as _MatVar,
- MatParam as _MatParam)
+from .expressions.poly import (PolyConst as _PolyConst, PolyVar as _PolyVar, PolyParam as _PolyParam)
+from .expressions.matrix import (MatConst as _MatConst, MatVar as _MatVar, MatParam as _MatParam)
from .state import State as _State
diff --git a/mdpoly/abc.py b/mdpoly/abc.py
index 16b155b..cd90f85 100644
--- a/mdpoly/abc.py
+++ b/mdpoly/abc.py
@@ -2,23 +2,21 @@
from __future__ import annotations
from typing import TYPE_CHECKING
-from .index import Number, Shape, MatrixIndex, PolyIndex
-from .constants import NUMERICS_EPS
-from .errors import AlgebraicError
-from .util import iszero
-
-if TYPE_CHECKING:
- from .state import State
-
from typing import Self, Type, TypeVar, Generic, Any, Iterable, Sequence
from enum import Enum, auto
from copy import copy
from abc import ABC, abstractmethod
-from dataclassabc import dataclassabc
from hashlib import sha256
+from dataclassabc import dataclassabc
+from .constants import NUMERICS_EPS
+from .errors import AlgebraicError
+from .util import iszero
+
+if TYPE_CHECKING:
+ from .index import Number, Shape, MatrixIndex, PolyIndex
+ from .state import State
-ReprT = TypeVar("ReprT", bound="Repr")
# ┏━╸╻ ╻┏━┓┏━┓┏━╸┏━┓┏━┓╻┏━┓┏┓╻┏━┓
# ┣╸ ┏╋┛┣━┛┣┳┛┣╸ ┗━┓┗━┓┃┃ ┃┃┗┫┗━┓
@@ -380,6 +378,9 @@ class Rel(ABC):
# ╹┗╸┗━╸╹ ╹┗╸┗━╸┗━┛┗━╸╹ ╹ ╹ ╹ ╹ ╹ ╹┗━┛╹ ╹┗━┛
+ReprT = TypeVar("ReprT", bound="Repr")
+
+
class Repr(ABC):
r""" Representation of a multivariate matrix polynomial expression.
diff --git a/mdpoly/algebra.py b/mdpoly/algebra.py
deleted file mode 100644
index 03a6fd5..0000000
--- a/mdpoly/algebra.py
+++ /dev/null
@@ -1,701 +0,0 @@
-""" Algebraic Structures for Expressions """
-from __future__ import annotations
-
-from .abc import Algebra, Expr, ReprT, Nothing, Const, Var, Param
-from .errors import AlgebraicError, InvalidShape, MissingParameters
-from .state import State
-from .index import Shape, MatrixIndex, PolyIndex, PolyVarIndex, Number
-
-from typing import cast, Sequence, Iterable, Type, TypeVar, Self
-from functools import reduce
-from itertools import product, chain, combinations_with_replacement
-from abc import abstractmethod
-from dataclasses import field, dataclass
-import operator
-
-from dataclassabc import dataclassabc
-
-
-@dataclassabc(eq=False)
-class BinaryOp(Expr):
- left: Expr = field()
- right: Expr = field()
-
-
-@dataclassabc(eq=False)
-class UnaryOp(Expr):
- right: Expr = field()
-
- @property
- def inner(self) -> Expr:
- """ Inner expression on which the operator is acting, alias for right. """
- return self.right
-
- @property
- def left(self) -> Expr:
- return Nothing()
-
- @left.setter
- def left(self, left) -> None:
- if not isinstance(left, Nothing):
- raise ValueError("Cannot set left of left-acting unary operator "
- "to something that is not of type Nothing.")
-
-
-class Reducible(Expr):
- """ Reducible Expression.
-
- Algebraic expression that can be written in terms of other (existing)
- expression objects, i.e. can be reduced to another expression made of
- simpler operations. For example subtraction can be written in term of
- addition and multiplication.
- """
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- return self.reduce().to_repr(repr_type, state)
-
- @abstractmethod
- def reduce(self) -> Expr:
- """ Reduce the expression to its basic elements """
-
-
-# TODO: review this idea before implementing
-# class Simplifiable(Expr):
-# """ Simplifiable Expression. """
-#
-# @abstractmethod
-# def simplify(self) -> Expr:
-# """ Simplify the expression """
-
-
-# ┏━┓┏━┓╻ ╻ ╻┏┓╻┏━┓┏┳┓╻┏━┓╻ ┏━┓╻ ┏━╸┏━╸┏┓ ┏━┓┏━┓
-# ┣━┛┃ ┃┃ ┗┳┛┃┗┫┃ ┃┃┃┃┃┣━┫┃ ┣━┫┃ ┃╺┓┣╸ ┣┻┓┣┳┛┣━┫
-# ╹ ┗━┛┗━╸ ╹ ╹ ╹┗━┛╹ ╹╹╹ ╹┗━╸ ╹ ╹┗━╸┗━┛┗━╸┗━┛╹┗╸╹ ╹
-
-
-class PolyRingExpr(Expr):
- r""" Expression with the algebraic behaviour of a polynomial ring.
-
- This is the algebra of :math:`\mathbb{R}[x_1, \ldots, x_n]`. Note that the
- polynomials are scalars.
- """
-
- # -- Properties ---
-
- @property
- def algebra(self) -> Algebra:
- return Algebra.poly_ring
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- if self.left.shape != self.right.shape:
- raise InvalidShape(f"Cannot perform operation {repr(self)} with "
- f"shapes {self.left.shape} and {self.right.shape}.")
- return self.left.shape
-
- # --- Helper methods for construction ---
-
- @classmethod
- def from_powers(cls, variable: PolyRingExpr, exponents: Iterable[int]) -> PolyRingExpr:
- """ Given a variable, say :math:`x`, and a list of exponents ``[0, 3, 5]``
- returns a polynomial :math:`x^5 + x^3 + 1`.
- """
- nonzero_exponents = filter(lambda e: e != 0, exponents)
- # Ignore typecheck because dataclassabc has no typing stub
- constant_term = PolyConst(1 if 0 in exponents else 0) # type: ignore[call-arg]
- # FIXME: remove annoying 0
- return sum((variable ** e for e in nonzero_exponents), constant_term)
-
-
- @classmethod
- def make_combinations(cls, variables: Iterable[PolyVar], max_degree: int) -> Iterable[PolyRingExpr]:
- """ Make combinations of terms.
-
- For example given :math:`x, y` and *max_degree* of 2 generates
- :math:`x^2, xy, x, y^2, y, 1`.
- """
- # Ignore typecheck because dataclassabc has no typing stub
- vars_and_const = chain(variables, (PolyConst(1),)) # type: ignore[call-arg]
- for comb in combinations_with_replacement(vars_and_const, max_degree):
- yield cast(PolyRingExpr, reduce(operator.mul, comb))
-
- # --- Operator Overloading ---
-
- def __add__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, PolyConst, other)
- return PolyAdd(self, other)
-
- def __radd__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, PolyConst, other)
- return PolyAdd(other, self)
-
- def __sub__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, PolyConst, other)
- return PolySub(self, other)
-
- def __rsub__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, PolyConst, other)
- return PolyAdd(other, self)
-
- def __neg__(self):
- # FIXME: Create PolyNeg?
- return PolyMul(PolyConst(-1), self)
-
- def __mul__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, PolyConst, other)
- return PolyMul(self, other)
-
- def __rmul__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, PolyConst, other)
- return PolyMul(other, self)
-
- def __matmul__(self, other):
- raise AlgebraicError("Cannot perform matrix multiplication in polynomial ring (they are scalars).")
-
- def __rmatmul__(self, other):
- self.__rmatmul__(other)
-
- def __truediv__(self, other):
- other = self._wrap(Number, PolyConst, other)
- if not isinstance(other, PolyConst | PolyParam):
- raise AlgebraicError("Cannot divide by variables in polynomial ring.")
-
- return PolyMul(self, other)
-
- def __rtruediv__(self, other):
- raise AlgebraicError("Cannot perform right division in polynomial ring.")
-
- def __pow__(self, other):
- other = self._wrap(Number, PolyConst, other)
- if not isinstance(other, PolyConst | PolyParam):
- raise AlgebraicError(f"Cannot raise to powers of type {type(other)} in "
- "polynomial ring. Only constants and parameters are allowed.")
- return PolyExp(left=self, right=other)
-
- # -- Other mathematical operations ---
-
- def diff(self, wrt: PolyVar) -> PolyPartialDiff:
- return PolyPartialDiff(self, wrt)
-
-
-@dataclassabc(frozen=True)
-class PolyVar(Var, PolyRingExpr):
- """ Variable TODO: desc """
- name: str # overloads Leaf.name
- shape: Shape = Shape.scalar() # ovearloads PolyRingExpr.shape
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- r = repr_type(self.shape)
- idx = PolyVarIndex.from_var(self, state), # important comma!
- r.set(MatrixIndex.scalar(), PolyIndex(idx), 1)
- return r, state
-
-
-@dataclassabc(frozen=True)
-class PolyConst(Const, PolyRingExpr):
- """ Constant TODO: desc """
- value: Number # overloads Const.value
- name: str = "" # overloads Leaf.name
- shape: Shape = Shape.scalar() # ovearloads PolyRingExpr.shape
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- r = repr_type(self.shape)
- r.set(MatrixIndex.scalar(), PolyIndex.constant(), self.value)
- return r, state
-
-
-@dataclassabc(frozen=True)
-class PolyParam(Param, PolyRingExpr):
- """ Polynomial parameter TODO: desc """
- name: str # overloads Leaf.name
- shape: Shape = Shape.scalar() # overloads PolyRingExpr.shape
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- if self not in state.parameters:
- raise MissingParameters("Cannot construct representation because "
- f"value for parameter {self} was not given.")
-
- return PolyConst(state.parameters[self]).to_repr(repr_type, state) # type: ignore[call-arg]
-
-
-@dataclass(eq=False)
-class PolyAdd(BinaryOp, PolyRingExpr):
- """ Addition operator between scalar polynomials. """
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- # Make a new empty representation
- r = repr_type(self.shape)
-
- # Make representations for existing stuff
- for node in self.children():
- nrepr, state = node.to_repr(repr_type, state)
-
- # Process non-zero terms
- for entry in nrepr.entries():
- for term in nrepr.terms(entry):
- s = r.at(entry, term) + nrepr.at(entry, term)
- r.set(entry, term, s)
-
- return r, state
-
- def __str__(self) -> str:
- return f"({self.left} + {self.right})"
-
-
-@dataclass(eq=False)
-class PolySub(BinaryOp, PolyRingExpr, Reducible):
- """ Subtraction operator between scalar polynomials. """
-
- def reduce(self) -> Expr:
- """ See :py:meth:`mdpoly.algebra.Reducible.reduce`. """
- return self.left + (-1 * self.right)
-
- def __str__(self) -> str:
- return f"({self.left} - {self.right})"
-
-
-@dataclass(eq=False)
-class PolyMul(BinaryOp, PolyRingExpr):
- """ Multiplication operator between scalar polynomials. """
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- r = repr_type(self.shape)
-
- lrepr, state = self.left.to_repr(repr_type, state)
- rrepr, state = self.right.to_repr(repr_type, state)
-
- # Non zero entries are the intersection since if either is zero the
- # result is zero
- nonzero_entries = set(lrepr.entries()) & set(rrepr.entries())
- for entry in nonzero_entries:
- # Compute polynomial product between non-zero entries
- for lterm, rterm in product(lrepr.terms(entry), rrepr.terms(entry)):
- # Compute where the results should go
- term = PolyIndex.product(lterm, rterm)
-
- # Compute product
- p = r.at(entry, term) + lrepr.at(entry, lterm) * rrepr.at(entry, rterm)
- r.set(entry, term, p)
-
- return r, state
-
- def __str__(self) -> str:
- return f"({self.left} * {self.right})"
-
-
-@dataclass(eq=False)
-class PolyExp(BinaryOp, PolyRingExpr, Reducible):
- """ Exponentiation operator between scalar polynomials. """
-
- @property # type: ignore[override]
- def right(self) -> Const: # type: ignore[override]
- if not isinstance(super().right, Const):
- raise AlgebraicError(f"Cannot raise {self.left} to {self.right} because"
- f"{self.right} is not a constant.")
-
- return cast(Const, super().right)
-
- @right.setter
- def right(self, right: Expr) -> None:
- # Workaround necessary because of a bug
- # https://bugs.python.org/issue14965
- BinaryOp.right.fset(self, right) # type: ignore
-
- def reduce(self) -> Expr:
- """ See :py:meth:`mdpoly.algebra.Reducible.reduce`. """
- var = self.left
- if not isinstance(self.right.value, int):
- raise NotImplementedError("Cannot raise to non-integer powers (yet).")
-
- ntimes = self.right.value - 1
- return reduce(operator.mul, (var for _ in range(ntimes)), var)
-
- def __str__(self) -> str:
- return f"({self.left} ** {self.right})"
-
-
-@dataclassabc(eq=False)
-class PolyPartialDiff(UnaryOp, PolyRingExpr):
- """ Partial differentiation of scalar polynomials. """
- wrt: PolyVar
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- return self.inner.shape
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- r = repr_type(self.shape)
- lrepr, state = self.inner.to_repr(repr_type, state)
-
- entry = MatrixIndex.scalar()
- wrt = state.index(self.wrt)
-
- for term in lrepr.terms(entry):
- # sadly, walrus operator does not support unpacking
- # https://bugs.python.org/issue43143
- # if ((newterm, fac) := PolyIndex.differentiate(term, wrt)):
- if result := PolyIndex.differentiate(term, wrt):
- newterm, fac = result
- r.set(entry, newterm, fac * lrepr.at(entry, term))
-
- return r, state
-
- def __str__(self) -> str:
- return f"(∂_{self.wrt} {self.inner})"
-
- def replace(self, old: PolyRingExpr, new: PolyRingExpr) -> Self:
- """ Overloads :py:meth:`mdpoly.abc.Expr.replace` """
- if self.wrt == old:
- if not isinstance(new, PolyVar):
- # FIXME: implement chain rule
- raise AlgebraicError(f"Cannot take a derivative with respect to {new}.")
-
- self.wrt = cast(PolyVar, new)
-
- return cast(Self, Expr.replace(self, old, new))
-
-
-# ┏┳┓┏━┓╺┳╸┏━┓╻╻ ╻ ┏━┓╻ ┏━╸┏━╸┏┓ ┏━┓┏━┓
-# ┃┃┃┣━┫ ┃ ┣┳┛┃┏╋┛ ┣━┫┃ ┃╺┓┣╸ ┣┻┓┣┳┛┣━┫
-# ╹ ╹╹ ╹ ╹ ╹┗╸╹╹ ╹ ╹ ╹┗━╸┗━┛┗━╸┗━┛╹┗╸╹ ╹
-
-class MatrixExpr(Expr):
- r""" Expression with the algebraic properties of a matrix ring and / or
- module (depending on the shape).
-
- We denote with :math:`R` a polynomial ring.
-
- - If the shape is square, like :math:`(n, n)` then this is :math:`M_n(R)`
- the ring of matrices over :math:`R`.
-
- - If the shape is something else like a row or column (:math:`(m, p)`,
- :math:`(1, n)` or :math:`(n, 1)`) this is a module, i.e. an algebra with
- addition and scalar multiplication, where the "scalars" come from
- :math:`R`.
-
- Furthermore some operators that are usually expected from matrices are
- already included (eg. transposition).
- """
-
- @property
- def algebra(self) -> Algebra:
- return Algebra.matrix_ring
-
- def at(self, entry: MatrixIndex, scalar_type: type) -> Expr:
- raise NotImplementedError
-
- def __add__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatAdd(self, other)
-
- def __sub__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatSub(self, other)
-
- def __rsub__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatSub(other, self)
-
- def __mul__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatScalarMul(other, self)
-
- def __rmul__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatScalarMul(other, self)
-
- def __matmul__(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatMul(self, other)
-
- def __rmatmul(self, other):
- self._assert_same_algebra(self, other)
- other = self._wrap(Number, MatConst, other)
- return MatMul(other, self)
-
- def __truediv__(self, scalar):
- scalar = self._wrap_if_constant(scalar)
- raise NotImplementedError
-
- def transpose(self) -> MatrixExpr:
- """ Matrix transposition. """
- raise NotImplementedError
- return MatTranspose(self)
-
- @property
- def T(self) -> MatrixExpr:
- """ Shorthand for :py:meth:`mdpoly.algebra.MatrixExpr.transpose`. """
- return self.transpose()
-
- def to_scalar(self, scalar_type: type):
- """ Convert to a scalar expression. """
- raise NotImplementedError
-
-
-@dataclassabc(frozen=True)
-class MatConst(Const, MatrixExpr):
- """ Matrix constant. TODO: desc. """
- value: Sequence[Sequence[Number]] # Row major, overloads Const.value
- shape: Shape # overloads Expr.shape
- name: str = "" # overloads Leaf.name
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- r = repr_type(self.shape)
-
- for i, row in enumerate(self.value):
- for j, val in enumerate(row):
- r.set(MatrixIndex(row=i, col=j), PolyIndex.constant(), val)
-
- return r, state
-
-
- def __str__(self) -> str:
- if not self.name:
- return repr(self.value)
-
- return self.name
-
-
-
-T = TypeVar("T", bound=Var)
-
-@dataclassabc(frozen=True)
-class MatVar(Var, MatrixExpr):
- """ Matrix of polynomial variables. TODO: desc """
- name: str # overloads Leaf.name
- shape: Shape # overloads Expr.shape
-
- # TODO: review this API, can be moved elsewhere?
- def to_scalars(self, scalar_var_type: Type[T]) -> Iterable[tuple[MatrixIndex, T]]:
- for row in range(self.shape.rows):
- for col in range(self.shape.cols):
- var = scalar_var_type(name=f"{self.name}_[{row},{col}]") # type: ignore[call-arg]
- entry = MatrixIndex(row, col)
-
- yield entry, var
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- r = repr_type(self.shape)
-
- # FIXME: do not hardcode scalar type
- for entry, var in self.to_scalars(PolyVar):
- idx = PolyVarIndex.from_var(var, state), # important comma!
- r.set(entry, PolyIndex(idx), 1)
-
- return r, state
-
- def __str__(self) -> str:
- return self.name
-
-
-@dataclassabc(frozen=True)
-class MatParam(Param, MatrixExpr):
- """ Matrix parameter. TODO: desc. """
- name: str
- shape: Shape
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- if self not in state.parameters:
- raise MissingParameters("Cannot construct representation because "
- f"value for parameter {self} was not given.")
-
- # FIXME: add conversion to scalar variables
- # Ignore typecheck because dataclassabc has not type stub
- return MatConst(state.parameters[self]).to_repr(repr_type, state) # type: ignore[call-arg]
-
- def __str__(self) -> str:
- return self.name
-
-
-@dataclassabc
-class MatAdd(BinaryOp, MatrixExpr):
- """ Addition operator between matrices. """
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- if not self.left.shape == self.right.shape:
- raise AlgebraicError(f"Cannot add matrices {self.left} and {self.right} "
- "with different shapes.")
- return self.left.shape
-
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- # Make a new empty representation
- r = repr_type(self.shape)
-
- # Make representations for existing stuff
- for node in self.children():
- nrepr, state = node.to_repr(repr_type, state)
-
- # Process non-zero terms
- for entry in nrepr.entries():
- for term in nrepr.terms(entry):
- s = r.at(entry, term) + nrepr.at(entry, term)
- r.set(entry, term, s)
-
- return r, state
-
- def __str__(self) -> str:
- return f"({self.left} + {self.right})"
-
-
-@dataclassabc
-class MatSub(BinaryOp, MatrixExpr, Reducible):
- """ Subtraction operator between matrices. """
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- if not self.left.shape == self.right.shape:
- raise AlgebraicError(f"Cannot subtract matrices {self.left} and {self.right} "
- f"with different shapes, {self.left.shape} and {self.right.shape}.")
- return self.left.shape
-
- def reduce(self) -> Expr:
- """ See :py:meth:`mdpoly.algebra.Reducible.reduce`. """
- return self.left + (-1 * self.right)
-
- def __str__(self) -> str:
- return f"({self.left} - {self.right})"
-
-
-@dataclassabc
-class MatElemMul(BinaryOp, MatrixExpr):
- """ Elementwise Matrix Multiplication. """
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- if not self.left.shape == self.right.shape:
- raise AlgebraicError("Cannot perform element-wise multiplication of matrices "
- f"{self.left} and {self.right} with different shapes, "
- f"{self.left.shape} and {self.right.shape}")
- return self.left.shape
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- r = repr_type(self.shape)
-
- lrepr, state = self.left.to_repr(repr_type, state)
- rrepr, state = self.right.to_repr(repr_type, state)
-
- # Non zero entries are the intersection since if either is zero the
- # result is zero
- nonzero_entries = set(lrepr.entries()) & set(rrepr.entries())
- for entry in nonzero_entries:
- # Compute polynomial product between non-zero entries
- for lterm, rterm in product(lrepr.terms(entry), rrepr.terms(entry)):
- # Compute where the results should go
- term = PolyIndex.product(lterm, rterm)
-
- # Compute product
- p = r.at(entry, term) + lrepr.at(entry, lterm) * rrepr.at(entry, rterm)
- r.set(entry, term, p)
-
- return r, state
-
- def __str__(self) -> str:
- return f"({self.left} .* {self.right})"
-
-
-@dataclassabc
-class MatScalarMul(BinaryOp, MatrixExpr):
- """ Matrix-Scalar Multiplication. Assumes scalar is on the left and matrix
- on the right. """
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- if not self.left.shape == Shape.scalar():
- raise InvalidShape(f"Matrix-scalar product assumes that left argumet {self.left} "
- f"but it has shape {self.left.shape}")
-
- return self.right.shape
-
-
- def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
- """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
- r = repr_type(self.shape)
-
- scalar_repr, state = self.left.to_repr(repr_type, state)
- mat_repr, state = self.right.to_repr(repr_type, state)
-
- for entry in mat_repr.entries():
- scalar_terms = scalar_repr.terms(MatrixIndex.scalar())
- mat_terms = mat_repr.terms(entry)
- for scalar_term, mat_term in product(scalar_terms, mat_terms):
- term = PolyIndex.product(scalar_term, mat_term)
-
- p = r.at(entry, term) + scalar_repr.at(entry, scalar_term) + mat_repr.at(entry, mat_term)
- r.set(entry, term, p)
-
- return r, state
-
- def __str__(self) -> str:
- return f"({self.left} * {self.right})"
-
-
-@dataclass(eq=False)
-class MatDotProd(BinaryOp, MatrixExpr):
- """ Dot product. """
-
- @property
- def shape(self) -> Shape:
- if not self.left.shape.is_row():
- raise AlgebraicError(f"Left operand {self.left} must be a row!")
-
- if not self.right.shape.is_col():
- raise AlgebraicError(f"Right operand {self.right} must be a column!")
-
- if self.left.shape.cols != self.right.shape.rows:
- raise AlgebraicError(f"Rows of {self.right} and columns {self.left} do not match!")
-
- return Shape.scalar()
-
-
-@dataclass(eq=False)
-class MatMul(BinaryOp, MatrixExpr):
- """ Matrix Multiplication. """
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- if not self.left.shape.rows == self.right.shape.cols:
- raise AlgebraicError("Cannot perform matrix multiplication between "
- f"{self.left} and {self.right} (shapes {self.left.shape} and {self.right.shape})")
-
- return Shape(self.left.shape.rows, self.right.shape.cols)
-
-
- def __str__(self) -> str:
- return f"({self.left} @ {self.right})"
-
-
-@dataclass(eq=False)
-class MatTranspose(UnaryOp, MatrixExpr):
- """ Matrix transposition """
-
- @property
- def shape(self) -> Shape:
- """ See :py:meth:`mdpoly.abc.Expr.shape`. """
- return Shape(self.inner.shape.cols, self.inner.shape.rows)
diff --git a/mdpoly/errors.py b/mdpoly/errors.py
index 85432b8..262f27e 100644
--- a/mdpoly/errors.py
+++ b/mdpoly/errors.py
@@ -1,7 +1,6 @@
-
class AlgebraicError(Exception):
""" This is raised whenever an invalid mathematical operation is performed.
- See also :py:mod:`mdpoly.algebra`.
+ See also :py:mod:`mdpoly.operations`.
"""
class InvalidShape(Exception):
diff --git a/mdpoly/expressions/__init__.py b/mdpoly/expressions/__init__.py
new file mode 100644
index 0000000..2efe342
--- /dev/null
+++ b/mdpoly/expressions/__init__.py
@@ -0,0 +1,66 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from abc import abstractmethod
+from typing import Type
+from dataclasses import field
+from dataclassabc import dataclassabc
+
+from ..abc import Expr, Nothing
+
+if TYPE_CHECKING:
+ from ..abc import ReprT
+ from ..state import State
+
+
+@dataclassabc(eq=False)
+class BinaryOp(Expr):
+ left: Expr = field()
+ right: Expr = field()
+
+
+@dataclassabc(eq=False)
+class UnaryOp(Expr):
+ right: Expr = field()
+
+ @property
+ def inner(self) -> Expr:
+ """ Inner expression on which the operator is acting, alias for right. """
+ return self.right
+
+ @property
+ def left(self) -> Expr:
+ return Nothing()
+
+ @left.setter
+ def left(self, left) -> None:
+ if not isinstance(left, Nothing):
+ raise ValueError("Cannot set left of left-acting unary operator "
+ "to something that is not of type Nothing.")
+
+
+class Reducible(Expr):
+ """ Reducible Expression.
+
+ Algebraic expression that can be written in terms of other (existing)
+ expression objects, i.e. can be reduced to another expression made of
+ simpler operations. For example subtraction can be written in term of
+ addition and multiplication.
+ """
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ return self.reduce().to_repr(repr_type, state)
+
+ @abstractmethod
+ def reduce(self) -> Expr:
+ """ Reduce the expression to its basic elements """
+
+
+# TODO: review this idea before implementing
+# class Simplifiable(Expr):
+# """ Simplifiable Expression. """
+#
+# @abstractmethod
+# def simplify(self) -> Expr:
+# """ Simplify the expression """
diff --git a/mdpoly/expressions/matrix.py b/mdpoly/expressions/matrix.py
new file mode 100644
index 0000000..65f86c2
--- /dev/null
+++ b/mdpoly/expressions/matrix.py
@@ -0,0 +1,175 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from typing import Type, TypeVar, Iterable, Sequence
+from dataclassabc import dataclassabc
+
+from .poly import PolyVar, PolyConst
+from ..abc import Expr, Var, Const, Param, Algebra
+from ..index import MatrixIndex, PolyIndex, PolyVarIndex
+from ..errors import MissingParameters
+
+from .. import operations
+
+if TYPE_CHECKING:
+ from ..abc import ReprT
+ from ..index import Shape, Number
+ from ..state import State
+
+
+class MatrixExpr(Expr):
+ r""" Expression with the algebraic properties of a matrix ring and / or
+ module (depending on the shape).
+
+ We denote with :math:`R` a polynomial ring.
+
+ - If the shape is square, like :math:`(n, n)` then this is :math:`M_n(R)`
+ the ring of matrices over :math:`R`.
+
+ - If the shape is something else like a row or column (:math:`(m, p)`,
+ :math:`(1, n)` or :math:`(n, 1)`) this is a module, i.e. an algebra with
+ addition and scalar multiplication, where the "scalars" come from
+ :math:`R`.
+
+ Furthermore some operators that are usually expected from matrices are
+ already included (eg. transposition).
+ """
+
+ @property
+ def algebra(self) -> Algebra:
+ return Algebra.matrix_ring
+
+ def __add__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+ return operations.add.MatAdd(self, other)
+
+ def __sub__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+ return operations.add.MatSub(self, other)
+
+ def __rsub__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+ return operations.add.MatSub(other, self)
+
+ def __neg__(self):
+ # FIXME: Create PolyNeg?
+ return operations.mul.MatScalarMul(PolyConst(-1), self)
+
+ def __mul__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+
+ # TODO: case distiction based on shapes
+ return operations.mul.MatScalarMul(other, self)
+
+
+ def __rmul__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+ return operations.mul.MatScalarMul(other, self)
+
+ def __matmul__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+ return operations.MatMul(self, other)
+
+ def __rmatmul(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, MatConst, other)
+ return operations.mul.MatMul(other, self)
+
+ def __truediv__(self, scalar):
+ scalar = self._wrap_if_constant(scalar)
+ raise NotImplementedError
+
+ def transpose(self) -> MatrixExpr:
+ """ Matrix transposition. """
+ raise NotImplementedError
+ return operations.transpose.MatTranspose(self)
+
+ @property
+ def T(self) -> MatrixExpr:
+ """ Shorthand for :py:meth:`mdpoly.expressions.matrix.MatrixExpr.transpose`. """
+ return self.transpose()
+
+ def to_scalar(self, scalar_type: type):
+ """ Convert to a scalar expression. """
+ raise NotImplementedError
+
+
+@dataclassabc(frozen=True)
+class MatConst(Const, MatrixExpr):
+ """ Matrix constant. TODO: desc. """
+ value: Sequence[Sequence[Number]] # Row major, overloads Const.value
+ shape: Shape # overloads Expr.shape
+ name: str = "" # overloads Leaf.name
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ r = repr_type(self.shape)
+
+ for i, row in enumerate(self.value):
+ for j, val in enumerate(row):
+ r.set(MatrixIndex(row=i, col=j), PolyIndex.constant(), val)
+
+ return r, state
+
+
+ def __str__(self) -> str:
+ if not self.name:
+ return repr(self.value)
+
+ return self.name
+
+
+
+T = TypeVar("T", bound=Var)
+
+@dataclassabc(frozen=True)
+class MatVar(Var, MatrixExpr):
+ """ Matrix of polynomial variables. TODO: desc """
+ name: str # overloads Leaf.name
+ shape: Shape # overloads Expr.shape
+
+ # TODO: review this API, can be moved elsewhere?
+ def to_scalars(self, scalar_var_type: Type[T]) -> Iterable[tuple[MatrixIndex, T]]:
+ for row in range(self.shape.rows):
+ for col in range(self.shape.cols):
+ var = scalar_var_type(name=f"{self.name}_[{row},{col}]") # type: ignore[call-arg]
+ entry = MatrixIndex(row, col)
+
+ yield entry, var
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ r = repr_type(self.shape)
+
+ # FIXME: do not hardcode scalar type
+ for entry, var in self.to_scalars(PolyVar):
+ idx = PolyVarIndex.from_var(var, state), # important comma!
+ r.set(entry, PolyIndex(idx), 1)
+
+ return r, state
+
+ def __str__(self) -> str:
+ return self.name
+
+
+@dataclassabc(frozen=True)
+class MatParam(Param, MatrixExpr):
+ """ Matrix parameter. TODO: desc. """
+ name: str
+ shape: Shape
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ if self not in state.parameters:
+ raise MissingParameters("Cannot construct representation because "
+ f"value for parameter {self} was not given.")
+
+ # FIXME: add conversion to scalar variables
+ # Ignore typecheck because dataclassabc has not type stub
+ return MatConst(state.parameters[self]).to_repr(repr_type, state) # type: ignore[call-arg]
+
+ def __str__(self) -> str:
+ return self.name
diff --git a/mdpoly/expressions/poly.py b/mdpoly/expressions/poly.py
new file mode 100644
index 0000000..3fe83ca
--- /dev/null
+++ b/mdpoly/expressions/poly.py
@@ -0,0 +1,169 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from typing import Type, Iterable
+from functools import reduce
+from itertools import chain, combinations_with_replacement
+from dataclassabc import dataclassabc
+
+from ..abc import Expr, Var, Const, Param, Algebra, ReprT
+from ..index import Shape, MatrixIndex, PolyIndex, PolyVarIndex, Number
+from ..errors import AlgebraicError, MissingParameters, InvalidShape
+
+from .. import operations
+
+if TYPE_CHECKING:
+ from ..index import Number
+ from ..state import State
+
+
+class PolyRingExpr(Expr):
+ r""" Expression with the algebraic behaviour of a polynomial ring.
+
+ This is the algebra of :math:`\mathbb{R}[x_1, \ldots, x_n]`. Note that the
+ polynomials are scalars.
+ """
+
+ # -- Properties ---
+
+ @property
+ def algebra(self) -> Algebra:
+ return Algebra.poly_ring
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ if self.left.shape != self.right.shape:
+ raise InvalidShape(f"Cannot perform operation {repr(self)} with "
+ f"shapes {self.left.shape} and {self.right.shape}.")
+ return self.left.shape
+
+ # --- Helper methods for construction ---
+
+ @classmethod
+ def from_powers(cls, variable: PolyRingExpr, exponents: Iterable[int]) -> PolyRingExpr:
+ """ Given a variable, say :math:`x`, and a list of exponents ``[0, 3, 5]``
+ returns a polynomial :math:`x^5 + x^3 + 1`.
+ """
+ nonzero_exponents = filter(lambda e: e != 0, exponents)
+ # Ignore typecheck because dataclassabc has no typing stub
+ constant_term = PolyConst(1 if 0 in exponents else 0) # type: ignore[call-arg]
+ # FIXME: remove annoying 0
+ return sum((variable ** e for e in nonzero_exponents), constant_term)
+
+
+ @classmethod
+ def make_combinations(cls, variables: Iterable[PolyVar], max_degree: int) -> Iterable[PolyRingExpr]:
+ """ Make combinations of terms.
+
+ For example given :math:`x, y` and *max_degree* of 2 generates
+ :math:`x^2, xy, x, y^2, y, 1`.
+ """
+ # Ignore typecheck because dataclassabc has no typing stub
+ vars_and_const = chain(variables, (PolyConst(1),)) # type: ignore[call-arg]
+ for comb in combinations_with_replacement(vars_and_const, max_degree):
+ yield cast(PolyRingExpr, reduce(operator.mul, comb))
+
+ # --- Operator Overloading ---
+
+ def __add__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, PolyConst, other)
+ return operations.add.PolyAdd(self, other)
+
+ def __radd__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, PolyConst, other)
+ return operations.add.PolyAdd(other, self)
+
+ def __sub__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, PolyConst, other)
+ return operations.add.PolySub(self, other)
+
+ def __rsub__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, PolyConst, other)
+ return operations.add.PolyAdd(other, self)
+
+ def __neg__(self):
+ # FIXME: Create PolyNeg?
+ return operations.mul.PolyMul(PolyConst(-1), self)
+
+ def __mul__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, PolyConst, other)
+ return operations.mul.PolyMul(self, other)
+
+ def __rmul__(self, other):
+ self._assert_same_algebra(self, other)
+ other = self._wrap(Number, PolyConst, other)
+ return operations.mul.PolyMul(other, self)
+
+ def __matmul__(self, other):
+ raise AlgebraicError("Cannot perform matrix multiplication in polynomial ring (they are scalars).")
+
+ def __rmatmul__(self, other):
+ self.__rmatmul__(other)
+
+ def __truediv__(self, other):
+ other = self._wrap(Number, PolyConst, other)
+ if not isinstance(other, PolyConst | PolyParam):
+ raise AlgebraicError("Cannot divide by variables in polynomial ring.")
+
+ return operations.mul.PolyMul(self, other)
+
+ def __rtruediv__(self, other):
+ raise AlgebraicError("Cannot perform right division in polynomial ring.")
+
+ def __pow__(self, other):
+ other = self._wrap(Number, PolyConst, other)
+ if not isinstance(other, PolyConst | PolyParam):
+ raise AlgebraicError(f"Cannot raise to powers of type {type(other)} in "
+ "polynomial ring. Only constants and parameters are allowed.")
+ return operations.exp.PolyExp(left=self, right=other)
+
+ # -- Other mathematical operations ---
+
+ def diff(self, wrt: PolyVar) -> operations.derivative.PolyPartialDiff:
+ return operations.derivative.PolyPartialDiff(right=self, wrt=wrt)
+
+
+@dataclassabc(frozen=True)
+class PolyVar(Var, PolyRingExpr):
+ """ Variable TODO: desc """
+ name: str # overloads Leaf.name
+ shape: Shape = Shape.scalar() # ovearloads PolyRingExpr.shape
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ r = repr_type(self.shape)
+ idx = PolyVarIndex.from_var(self, state), # important comma!
+ r.set(MatrixIndex.scalar(), PolyIndex(idx), 1)
+ return r, state
+
+
+@dataclassabc(frozen=True)
+class PolyConst(Const, PolyRingExpr):
+ """ Constant TODO: desc """
+ value: Number # overloads Const.value
+ name: str = "" # overloads Leaf.name
+ shape: Shape = Shape.scalar() # ovearloads PolyRingExpr.shape
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ r = repr_type(self.shape)
+ r.set(MatrixIndex.scalar(), PolyIndex.constant(), self.value)
+ return r, state
+
+
+@dataclassabc(frozen=True)
+class PolyParam(Param, PolyRingExpr):
+ """ Polynomial parameter TODO: desc """
+ name: str # overloads Leaf.name
+ shape: Shape = Shape.scalar() # overloads PolyRingExpr.shape
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ if self not in state.parameters:
+ raise MissingParameters("Cannot construct representation because "
+ f"value for parameter {self} was not given.")
+
+ return PolyConst(state.parameters[self]).to_repr(repr_type, state) # type: ignore[call-arg]
diff --git a/mdpoly/index.py b/mdpoly/index.py
index 5211245..070412c 100644
--- a/mdpoly/index.py
+++ b/mdpoly/index.py
@@ -1,15 +1,17 @@
from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from typing import Self, NamedTuple, Optional, Sequence
+from itertools import filterfalse
from .errors import InvalidShape
from .util import partition, isclose
-from itertools import filterfalse
-from typing import Self, NamedTuple, Optional, Sequence, TYPE_CHECKING
-
if TYPE_CHECKING:
from .state import State
from .abc import Var
+# FIXME: this is not really an appropriate place for this -> constants?
Number = int | float
@@ -206,6 +208,11 @@ class PolyIndex(tuple[PolyVarIndex]):
return cls(PolyVarIndex(k, v) for k, v in d.items())
@classmethod
+ def from_expr(cls, product_of_vars) -> Self:
+ # TODO: implement product of variables
+ raise NotImplementedError
+
+ @classmethod
def constant(cls) -> Self:
""" Index of the constant term. """
return cls((PolyVarIndex.constant(),))
diff --git a/mdpoly/operations/__init__.py b/mdpoly/operations/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/mdpoly/operations/__init__.py
diff --git a/mdpoly/operations/add.py b/mdpoly/operations/add.py
new file mode 100644
index 0000000..bf0c5a0
--- /dev/null
+++ b/mdpoly/operations/add.py
@@ -0,0 +1,81 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from typing import Type
+from dataclassabc import dataclassabc
+
+from ..abc import Expr
+from ..errors import AlgebraicError
+
+from ..expressions import BinaryOp, Reducible
+from ..expressions.matrix import MatrixExpr
+from ..expressions.poly import PolyRingExpr
+
+if TYPE_CHECKING:
+ from ..abc import ReprT
+ from ..index import Shape
+ from ..state import State
+
+
+@dataclassabc(eq=False)
+class MatAdd(BinaryOp, MatrixExpr):
+ """ Addition operator between matrices. """
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ if not self.left.shape == self.right.shape:
+ raise AlgebraicError(f"Cannot add matrices {self.left} and {self.right} "
+ "with different shapes.")
+ return self.left.shape
+
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ # Make a new empty representation
+ r = repr_type(self.shape)
+
+ # Make representations for existing stuff
+ for node in self.children():
+ nrepr, state = node.to_repr(repr_type, state)
+
+ # Process non-zero terms
+ for entry in nrepr.entries():
+ for term in nrepr.terms(entry):
+ s = r.at(entry, term) + nrepr.at(entry, term)
+ r.set(entry, term, s)
+
+ return r, state
+
+ def __str__(self) -> str:
+ return f"({self.left} + {self.right})"
+
+
+@dataclassabc(eq=False)
+class MatSub(BinaryOp, MatrixExpr, Reducible):
+ """ Subtraction operator between matrices. """
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ if not self.left.shape == self.right.shape:
+ raise AlgebraicError(f"Cannot subtract matrices {self.left} and {self.right} "
+ f"with different shapes, {self.left.shape} and {self.right.shape}.")
+ return self.left.shape
+
+ def reduce(self) -> Expr:
+ """ See :py:meth:`mdpoly.expressions.Reducible.reduce`. """
+ return self.left + (-1 * self.right)
+
+ def __str__(self) -> str:
+ return f"({self.left} - {self.right})"
+
+
+@dataclassabc(eq=False)
+class PolyAdd(MatAdd, PolyRingExpr):
+ ...
+
+
+@dataclassabc(eq=False)
+class PolySub(MatSub, PolyRingExpr):
+ ...
diff --git a/mdpoly/operations/derivative.py b/mdpoly/operations/derivative.py
new file mode 100644
index 0000000..6e02b0e
--- /dev/null
+++ b/mdpoly/operations/derivative.py
@@ -0,0 +1,62 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from typing import Type, Self, cast
+from dataclassabc import dataclassabc
+
+from ..abc import Expr
+from ..errors import AlgebraicError
+from ..index import Shape, MatrixIndex, PolyIndex
+
+from ..expressions import UnaryOp
+from ..expressions.poly import PolyRingExpr, PolyVar
+
+if TYPE_CHECKING:
+ from ..abc import ReprT
+ from ..state import State
+
+
+# TODO: implement vector derivatives
+
+
+@dataclassabc(eq=False)
+class PolyPartialDiff(UnaryOp, PolyRingExpr):
+ """ Partial differentiation of scalar polynomials. """
+ wrt: PolyVar
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ return self.inner.shape
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ r = repr_type(self.shape)
+ lrepr, state = self.inner.to_repr(repr_type, state)
+
+ entry = MatrixIndex.scalar()
+ wrt = state.index(self.wrt)
+
+ for term in lrepr.terms(entry):
+ # sadly, walrus operator does not support unpacking
+ # https://bugs.python.org/issue43143
+ # if ((newterm, fac) := PolyIndex.differentiate(term, wrt)):
+ if result := PolyIndex.differentiate(term, wrt):
+ newterm, fac = result
+ r.set(entry, newterm, fac * lrepr.at(entry, term))
+
+ return r, state
+
+ def __str__(self) -> str:
+ return f"(∂_{self.wrt} {self.inner})"
+
+ def replace(self, old: PolyRingExpr, new: PolyRingExpr) -> Self:
+ """ Overloads :py:meth:`mdpoly.abc.Expr.replace` """
+ if self.wrt == old:
+ if not isinstance(new, PolyVar):
+ # FIXME: implement chain rule
+ raise AlgebraicError(f"Cannot take a derivative with respect to {new}.")
+
+ self.wrt = cast(PolyVar, new)
+
+ return cast(Self, Expr.replace(self, old, new))
diff --git a/mdpoly/operations/exp.py b/mdpoly/operations/exp.py
new file mode 100644
index 0000000..fbc67f5
--- /dev/null
+++ b/mdpoly/operations/exp.py
@@ -0,0 +1,52 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from operator import mul as opmul
+from typing import cast
+from functools import reduce
+from dataclasses import dataclass
+
+from ..abc import Expr, Const
+from ..errors import AlgebraicError
+
+from ..expressions import BinaryOp, Reducible
+from ..expressions.matrix import MatrixExpr
+from ..expression.poly import PolyRingExpr
+
+
+# TODO: implement matrix exponential, use caley-hamilton thm magic
+@dataclass(eq=False)
+class MatExp(BinaryOp, MatrixExpr, Reducible):
+ def __init__(self):
+ raise NotImplementedError
+
+
+@dataclass(eq=False)
+class PolyExp(BinaryOp, PolyRingExpr, Reducible):
+ """ Exponentiation operator between scalar polynomials. """
+
+ @property # type: ignore[override]
+ def right(self) -> Const: # type: ignore[override]
+ if not isinstance(super().right, Const):
+ raise AlgebraicError(f"Cannot raise {self.left} to {self.right} because"
+ f"{self.right} is not a constant.")
+
+ return cast(Const, super().right)
+
+ @right.setter
+ def right(self, right: Expr) -> None:
+ # Workaround necessary because of a bug
+ # https://bugs.python.org/issue14965
+ BinaryOp.right.fset(self, right) # type: ignore
+
+ def reduce(self) -> Expr:
+ """ See :py:meth:`mdpoly.expressions.Reducible.reduce`. """
+ var = self.left
+ if not isinstance(self.right.value, int):
+ raise NotImplementedError("Cannot raise to non-integer powers (yet).")
+
+ ntimes = self.right.value - 1
+ return reduce(opmul, (var for _ in range(ntimes)), var)
+
+ def __str__(self) -> str:
+ return f"({self.left} ** {self.right})"
diff --git a/mdpoly/operations/mul.py b/mdpoly/operations/mul.py
new file mode 100644
index 0000000..a2a3cc4
--- /dev/null
+++ b/mdpoly/operations/mul.py
@@ -0,0 +1,186 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from typing import Type
+from itertools import product
+from dataclasses import dataclass
+from dataclassabc import dataclassabc
+
+from ..index import Shape
+from ..errors import AlgebraicError, InvalidShape
+from ..index import MatrixIndex, PolyIndex
+
+from ..expressions import BinaryOp, Reducible
+from ..expressions.matrix import MatrixExpr
+from ..expression.poly import PolyRingExpr
+
+if TYPE_CHECKING:
+ from ..abc import ReprT
+ from ..state import State
+
+
+# ┏┳┓┏━┓╺┳╸┏━┓╻╻ ╻ ┏━┓┏━┓┏━┓╺┳┓╻ ╻┏━╸╺┳╸┏━┓
+# ┃┃┃┣━┫ ┃ ┣┳┛┃┏╋┛ ┣━┛┣┳┛┃ ┃ ┃┃┃ ┃┃ ┃ ┗━┓
+# ╹ ╹╹ ╹ ╹ ╹┗╸╹╹ ╹ ╹ ╹┗╸┗━┛╺┻┛┗━┛┗━╸ ╹ ┗━┛
+
+
+@dataclassabc
+class MatElemMul(BinaryOp, MatrixExpr):
+ """ Elementwise Matrix Multiplication. """
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ if not self.left.shape == self.right.shape:
+ raise AlgebraicError("Cannot perform element-wise multiplication of matrices "
+ f"{self.left} and {self.right} with different shapes, "
+ f"{self.left.shape} and {self.right.shape}")
+ return self.left.shape
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ r = repr_type(self.shape)
+
+ lrepr, state = self.left.to_repr(repr_type, state)
+ rrepr, state = self.right.to_repr(repr_type, state)
+
+ # Non zero entries are the intersection since if either is zero the
+ # result is zero
+ nonzero_entries = set(lrepr.entries()) & set(rrepr.entries())
+ for entry in nonzero_entries:
+ # Compute polynomial product between non-zero entries
+ for lterm, rterm in product(lrepr.terms(entry), rrepr.terms(entry)):
+ # Compute where the results should go
+ term = PolyIndex.product(lterm, rterm)
+
+ # Compute product
+ p = r.at(entry, term) + lrepr.at(entry, lterm) * rrepr.at(entry, rterm)
+ r.set(entry, term, p)
+
+ return r, state
+
+ def __str__(self) -> str:
+ return f"({self.left} .* {self.right})"
+
+
+@dataclassabc
+class MatScalarMul(BinaryOp, MatrixExpr):
+ """ Matrix-Scalar Multiplication. Assumes scalar is on the left and matrix
+ on the right. """
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ if not self.left.shape == Shape.scalar():
+ raise InvalidShape(f"Matrix-scalar product assumes that left argumet {self.left} "
+ f"but it has shape {self.left.shape}")
+
+ return self.right.shape
+
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ r = repr_type(self.shape)
+
+ scalar_repr, state = self.left.to_repr(repr_type, state)
+ mat_repr, state = self.right.to_repr(repr_type, state)
+
+ for entry in mat_repr.entries():
+ scalar_terms = scalar_repr.terms(MatrixIndex.scalar())
+ mat_terms = mat_repr.terms(entry)
+ for scalar_term, mat_term in product(scalar_terms, mat_terms):
+ term = PolyIndex.product(scalar_term, mat_term)
+
+ p = r.at(entry, term) + scalar_repr.at(entry, scalar_term) + mat_repr.at(entry, mat_term)
+ r.set(entry, term, p)
+
+ return r, state
+
+ def __str__(self) -> str:
+ return f"({self.left} * {self.right})"
+
+
+@dataclass(eq=False)
+class MatMul(BinaryOp, MatrixExpr):
+ """ Matrix Multiplication. """
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ if not self.left.shape.rows == self.right.shape.cols:
+ raise AlgebraicError("Cannot perform matrix multiplication between "
+ f"{self.left} and {self.right} (shapes {self.left.shape} and {self.right.shape})")
+
+ return Shape(self.left.shape.rows, self.right.shape.cols)
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ r = repr_type(self.shape)
+
+ lrepr, state = self.left.to_repr(repr_type, state)
+ rrepr, state = self.right.to_repr(repr_type, state)
+
+ # Compute matrix product
+ for row in range(self.left.shape.rows):
+ for col in range(self.right.shape.cols):
+ for i in range(self.left.shape.cols):
+ raise NotImplementedError
+
+ return r, state
+
+
+ def __str__(self) -> str:
+ return f"({self.left} @ {self.right})"
+
+
+@dataclass(eq=False)
+class MatDotProd(BinaryOp, MatrixExpr, Reducible):
+ """ Dot product. """
+
+ @property
+ def shape(self) -> Shape:
+ if not self.left.shape.is_row():
+ raise AlgebraicError(f"Left operand {self.left} must be a row!")
+
+ if not self.right.shape.is_col():
+ raise AlgebraicError(f"Right operand {self.right} must be a column!")
+
+ if self.left.shape.cols != self.right.shape.rows:
+ raise AlgebraicError(f"Rows of {self.right} and columns {self.left} do not match!")
+
+ return Shape.scalar()
+
+
+# ┏━┓┏━┓╻ ╻ ╻┏┓╻┏━┓┏┳┓╻┏━┓╻ ┏━┓┏━┓┏━┓╺┳┓╻ ╻┏━╸╺┳╸
+# ┣━┛┃ ┃┃ ┗┳┛┃┗┫┃ ┃┃┃┃┃┣━┫┃ ┣━┛┣┳┛┃ ┃ ┃┃┃ ┃┃ ┃
+# ╹ ┗━┛┗━╸ ╹ ╹ ╹┗━┛╹ ╹╹╹ ╹┗━╸ ╹ ╹┗╸┗━┛╺┻┛┗━┛┗━╸ ╹
+
+
+@dataclass(eq=False)
+class PolyMul(BinaryOp, PolyRingExpr):
+ """ Multiplication operator between scalar polynomials. """
+
+ def to_repr(self, repr_type: Type[ReprT], state: State) -> tuple[ReprT, State]:
+ """ See :py:meth:`mdpoly.abc.Expr.to_repr`. """
+ r = repr_type(self.shape)
+
+ lrepr, state = self.left.to_repr(repr_type, state)
+ rrepr, state = self.right.to_repr(repr_type, state)
+
+ # Non zero entries are the intersection since if either is zero the
+ # result is zero
+ nonzero_entries = set(lrepr.entries()) & set(rrepr.entries())
+ for entry in nonzero_entries:
+ # Compute polynomial product between non-zero entries
+ for lterm, rterm in product(lrepr.terms(entry), rrepr.terms(entry)):
+ # Compute where the results should go
+ term = PolyIndex.product(lterm, rterm)
+
+ # Compute product
+ p = r.at(entry, term) + lrepr.at(entry, lterm) * rrepr.at(entry, rterm)
+ r.set(entry, term, p)
+
+ return r, state
+
+ def __str__(self) -> str:
+ return f"({self.left} * {self.right})"
diff --git a/mdpoly/operations/transpose.py b/mdpoly/operations/transpose.py
new file mode 100644
index 0000000..750d0c0
--- /dev/null
+++ b/mdpoly/operations/transpose.py
@@ -0,0 +1,20 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+
+from dataclasses import dataclass
+
+from ..expressions import UnaryOp
+from ..expressions.matrix import MatrixExpr
+
+if TYPE_CHECKING:
+ from ..index import Shape
+
+
+@dataclass(eq=False)
+class MatTranspose(UnaryOp, MatrixExpr):
+ """ Matrix transposition """
+
+ @property
+ def shape(self) -> Shape:
+ """ See :py:meth:`mdpoly.abc.Expr.shape`. """
+ return Shape(self.inner.shape.cols, self.inner.shape.rows)
diff --git a/mdpoly/representations.py b/mdpoly/representations.py
index 8268c42..32c75d7 100644
--- a/mdpoly/representations.py
+++ b/mdpoly/representations.py
@@ -1,10 +1,14 @@
-from .abc import Repr
-from .index import Number, Shape, MatrixIndex, PolyIndex
+from __future__ import annotations
+from typing import TYPE_CHECKING
from typing import Iterable
-
import numpy as np
-import numpy.typing as npt
+
+if TYPE_CHECKING:
+ import numpy.typing as npt
+
+ from .abc import Repr
+ from .index import Number, Shape, MatrixIndex, PolyIndex
class SparseRepr(Repr):
diff --git a/mdpoly/state.py b/mdpoly/state.py
index 0095916..092de84 100644
--- a/mdpoly/state.py
+++ b/mdpoly/state.py
@@ -1,5 +1,6 @@
from __future__ import annotations
from typing import TYPE_CHECKING
+
from dataclasses import dataclass, field
from .index import PolyVarIndex
diff --git a/mdpoly/util.py b/mdpoly/util.py
index ae726ef..52cbb87 100644
--- a/mdpoly/util.py
+++ b/mdpoly/util.py
@@ -1,7 +1,12 @@
-from .constants import NUMERICS_EPS
-
from itertools import tee, filterfalse
+from typing import TYPE_CHECKING
+
from typing import Iterable
+from .constants import NUMERICS_EPS
+
+if TYPE_CHECKING:
+ pass
+
def partition(pred, iterable):
"""Partition entries into false entries and true entries.