diff options
author | Nao Pross <np@0hm.ch> | 2024-05-09 12:43:50 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-05-09 12:43:50 +0200 |
commit | bb26bb82ca7623035a12f2c4bae35da7039eec97 (patch) | |
tree | 11064de331ec31e0ca56576df13283bbcb8322b1 | |
parent | Create FromStateMonadMixin (diff) | |
download | polymatrix-bb26bb82ca7623035a12f2c4bae35da7039eec97.tar.gz polymatrix-bb26bb82ca7623035a12f2c4bae35da7039eec97.zip |
Improve implementation of DegreeExprMixin
Diffstat (limited to '')
-rw-r--r-- | polymatrix/expression/mixins/degreeexprmixin.py | 48 |
1 files changed, 20 insertions, 28 deletions
diff --git a/polymatrix/expression/mixins/degreeexprmixin.py b/polymatrix/expression/mixins/degreeexprmixin.py index 5518d0a..522af7c 100644 --- a/polymatrix/expression/mixins/degreeexprmixin.py +++ b/polymatrix/expression/mixins/degreeexprmixin.py @@ -5,13 +5,18 @@ from polymatrix.polymatrix.init import init_poly_matrix from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin from polymatrix.polymatrix.abc import PolyMatrix from polymatrix.expressionstate.abc import ExpressionState +from polymatrix.polymatrix.index import MatrixIndex, PolyMatrixDict, PolyDict, MonomialIndex from polymatrix.utils.getstacklines import FrameSummary -# NP: IIRC this gets the highest degree. -# NP: If I am correct consider renaming to MaxDegree -# NP: (also what is the use case?) class DegreeExprMixin(ExpressionBaseMixin): + """ + Elementwise maximum degree. + + The result is a constant matrix with each entry containing the highest + degree of the polynomial in the entry of the argument. + """ + @property @abc.abstractmethod def underlying(self) -> ExpressionBaseMixin: @@ -23,32 +28,19 @@ class DegreeExprMixin(ExpressionBaseMixin): ... # overwrites the abstract method of `ExpressionBaseMixin` - def apply( - self, - state: ExpressionState, - ) -> tuple[ExpressionState, PolyMatrix]: - state, underlying = self.underlying.apply(state=state) - - poly_matrix_data = {} - - for row in range(underlying.shape[0]): - for col in range(underlying.shape[1]): - - polynomial = underlying.get_poly(row, col) + def apply(self, state: ExpressionState) -> tuple[ExpressionState, PolyMatrix]: - if polynomial is None or len(polynomial) == 0: - poly_matrix_data[row, col] =0 + state, p = self.underlying.apply(state=state) + result = PolyMatrixDict.empty() - else: - def gen_degrees(): - for monomial, _ in polynomial.items(): - yield sum(count for _, count in monomial) - - poly_matrix_data[row, col] = {tuple(): max(gen_degrees())} + for entry, poly in p.entries(): + max_degree = 0 + for monomial, coeff in poly.terms(): + if monomial.degree > max_degree: + max_degree = monomial.degree - poly_matrix = init_poly_matrix( - data=poly_matrix_data, - shape=underlying.shape, - ) + result[*entry] = PolyDict({ + MonomialIndex.constant(): max_degree + }) - return state, poly_matrix + return state, init_poly_matrix(data=result, shape=p.shape) |