diff options
author | Michael Schneeberger <michael.schneeberger@fhnw.ch> | 2022-02-21 16:21:50 +0100 |
---|---|---|
committer | Michael Schneeberger <michael.schneeberger@fhnw.ch> | 2022-02-21 16:21:50 +0100 |
commit | 4abcab8da3e553390cd58b42cae52f210d011ada (patch) | |
tree | aea7a9e4f54d6f7f9588bea5724700048240e0dd | |
parent | add skew-symmetry and gradient function (diff) | |
download | polymatrix-4abcab8da3e553390cd58b42cae52f210d011ada.tar.gz polymatrix-4abcab8da3e553390cd58b42cae52f210d011ada.zip |
bugfixes
Diffstat (limited to '')
-rw-r--r-- | polymatrix/polystruct.py | 492 | ||||
-rw-r--r-- | polymatrix/sympyutils.py | 55 |
2 files changed, 393 insertions, 154 deletions
diff --git a/polymatrix/polystruct.py b/polymatrix/polystruct.py index 64c0f42..202f6cc 100644 --- a/polymatrix/polystruct.py +++ b/polymatrix/polystruct.py @@ -1,11 +1,13 @@ import abc import collections +from pickletools import int4 import typing import numpy as np import dataclasses import dataclass_abc -import scipy.special +from scipy.special import binom import itertools +import functools from polymatrix.utils import variable_to_index @@ -30,76 +32,257 @@ class PolyMatrixMixin(abc.ABC): @property @abc.abstractmethod - def subs_func(self) -> typing.Callable[[DegreeType, int, int], tuple[float]]: + def re_index(self) -> typing.Callable[[int, int, int, tuple[int, ...]], tuple[int, int, int, tuple[int, ...], float]]: ... @property @abc.abstractmethod - def re_index(self) -> dict[DegreeType, dict[int, int, tuple[int, int, float]]]: + def is_constant(self) -> int: ... @property @abc.abstractmethod - def re_index_func(self) -> typing.Callable[[int, int], tuple[int, int, float]]: + def is_vector(self) -> bool: ... + +class EqualityConstraintMixin(abc.ABC): @property @abc.abstractmethod - def re_index_func_2(self) -> typing.Callable[[int, int], tuple[int, int, float]]: + def terms(self) -> dict[int, dict[tuple[int, tuple, int], float]]: ... + # @property + # @abc.abstractmethod + # def offset_dict(self) -> dict[tuple[PolyMatrixMixin, int], int]: + # ... + + # @property + # @abc.abstractmethod + # def param_dict(self) -> dict[tuple[PolyMatrixMixin, int], int]: + # ... + @property @abc.abstractmethod - def is_vector(self) -> bool: + def n_param(self) -> int: ... + @functools.cached_property + def eq_to_row_index(self): + rows_to_eq = list(set((eq_idx, perm) for eq_tuple_degree in self.terms.values() for (eq_idx, perm, var) in eq_tuple_degree.keys())) + eq_to_rows = {eq: idx for idx, eq in enumerate(rows_to_eq)} + return eq_to_rows -class EquationMixin(abc.ABC): + @property + def n_eq(self): + return len(self.eq_to_row_index) + + # @property + # @abc.abstractmethod + # def n_var(self) -> int: + # ... + + def get_constraint_func(self): + def func(x): + mat = np.zeros((self.n_eq,)) + + for degree, degree_tuples in self.terms.items(): + if 0 == degree: + for (idx_eq, perm, variables), value in degree_tuples.items(): + row_idx = self.eq_to_row_index[(idx_eq, perm)] + mat[row_idx] += value + + elif 0 < degree: + def gen_vector(): + for indices in itertools.combinations_with_replacement(range(self.n_param), degree): + yield np.prod(list(x[idx] for idx in indices)) + vector = list(gen_vector()) + + for (idx_eq, perm, variables), value in degree_tuples.items(): + row_idx = self.eq_to_row_index[(idx_eq, perm)] + vector_val = vector[variable_to_index(self.n_param, variables)] + mat[row_idx] += value * vector_val + + return mat + return func + + def get_constraint_jacobian(self): + def func(x): + jac_mat = np.zeros((self.n_eq, self.n_param)) + + for degree, degree_tuples in self.terms.items(): + if 1 == degree: + for (idx_eq, perm, variables), value in degree_tuples.items(): + row_idx = self.eq_to_row_index[(idx_eq, perm)] + jac_mat[row_idx, variables[0]] += value + + # for var in variables: + # col_idx = variable_to_index(self.n_param, (var,)) + # jac_mat[row_idx, col_idx] += value + + elif 1 < degree: + def gen_vector(): + for indices in itertools.combinations_with_replacement(range(self.n_param), degree-1): + yield np.prod(list(x[idx] for idx in indices)) + vector = list(gen_vector()) + + for (idx_eq, perm, variables), value in degree_tuples.items(): + row_idx = self.eq_to_row_index[(idx_eq, perm)] + + for var_idx, var in enumerate(variables): + other_variables = variables[:var_idx] + variables[var_idx+1:] + vector_val = vector[variable_to_index(self.n_param, other_variables)] + + # col_idx = variable_to_index(self.n_param, (var,)) + jac_mat[row_idx, var] += value*vector_val + + return jac_mat + return func + + def get_constraint_hessian(self): + def func(x, v): + hess_mat = np.zeros((self.n_param, self.n_param)) + + for degree, degree_tuples in self.terms.items(): + if 2 == degree: + for (idx_eq, perm, variables), value in degree_tuples.items(): + eq_idx = self.eq_to_row_index[(idx_eq, perm)] + + for var_idx_x, var_x in enumerate(variables): + other_variables = variables[:var_idx_x] + variables[var_idx_x+1:] + + for var_idx_y, var_y in enumerate(other_variables): + hess_mat[var_x, var_y] = v[eq_idx]*value + + elif 2 < degree: + def gen_vector(): + for indices in itertools.combinations_with_replacement(range(self.n_param), degree-2): + yield np.prod(list(x[idx] for idx in indices)) + vector = list(gen_vector()) + + for (idx_eq, perm, variables), value in degree_tuples.items(): + eq_idx = self.eq_to_row_index[(idx_eq, perm)] + + for var_idx_x, var_x in enumerate(variables): + other_variables = variables[:var_idx_x] + variables[var_idx_x+1:] + + for var_idx_y, var_y in enumerate(other_variables): + other_variables_2 = variables[:var_idx_y] + variables[var_idx_y+1:] + vector_val = vector[variable_to_index(self.n_param, other_variables_2)] + hess_mat[var_x, var_y] = v[eq_idx]*value*vector_val + + return hess_mat + return func + + +class PolyEquationMixin(abc.ABC): @property @abc.abstractmethod def terms(self) -> list[tuple[PolyMatrixMixin, PolyMatrixMixin]]: + """ + the terms the polynomial matrix equation consists of + """ + ... @property @abc.abstractmethod def n_var(self) -> int: - ... + """ + number of variables defining the polynomials - def create( - self, - subs: dict[PolyMatrixMixin, dict[DegreeType, dict[int, int, float]]] = None, - ): - if subs is None: - added_subs = {} - else: - added_subs = subs + for example n_var=3: x1, x2 and x3 + """ - binom = scipy.special.binom + ... + + @functools.cached_property + def _param_list(self) -> list[tuple[PolyMatrixMixin, int], int]: + """ + used to determine the offset of the coefficients of each polynomial matrix + """ # create parameter offset all_structs = set(indexed_poly_mat for term in self.terms for indexed_poly_mat in term) def gen_n_param_per_struct(): - acc = 0 + # acc = 0 for struct in all_structs: - for degree in struct.degrees: + if struct.is_constant: + continue - yield (struct, degree), acc + for degree in struct.degrees: if struct.is_vector: number_of_terms = int(self.n_var * binom(self.n_var+degree-1, degree)) else: number_of_terms = int(self.n_var**2 * binom(self.n_var+degree-1, degree)) - acc += number_of_terms - - yield None, acc #, None + yield (struct, degree), number_of_terms param_list = list(gen_n_param_per_struct()) - n_param = param_list[-1][1] - offset_dict = dict(((e[0], e[1]) for e in param_list[:-1])) + + return param_list + + @functools.cached_property + def offset_dict(self) -> dict[tuple[PolyMatrixMixin, int], int]: + """ + determine the offset of the coefficients of each polynomial matrix ordered by degree + + The polynomial equation + + A * B = 0 + + is represented by a vector of coefficients `coeff`. Each coefficients is associated to polynomial matrix. + + For example + + offset_dict[(A,0)] = 12 + + means that the first coefficient a011 (meaning 011=degree+row+col) associated to A and degree 0 is located at index 12 of `coeff`. + """ + + param_key_value = list(zip(*self._param_list)) + + if 0 < len(param_key_value): + param_key, param_value = param_key_value + cum_sum = list(itertools.accumulate(param_value)) + offset_dict = dict(zip(param_key, [0] + cum_sum[:-1])) + else: + offset_dict = {} + + return offset_dict + + @functools.cached_property + def n_param(self) -> dict[tuple[PolyMatrixMixin, int], int]: + """ + number of coefficients of polynomial matrix equation, e.g. `len(coeff)` + """ + + if 0 < len(self._param_list): + *_, n_param = itertools.accumulate(e[1] for e in self._param_list) + else: + n_param = 0 + + return n_param + + def create( + self, + subs: dict[PolyMatrixMixin, dict[DegreeType, dict[int, int, float]]] = None, + ) -> EqualityConstraintMixin: + n_var_2 = self.n_var**2 + + if subs is None: + added_subs = {} + else: + added_subs = subs + + # binom = scipy.special.binom + + # create parameter offset + all_structs = set(indexed_poly_mat for term in self.terms for indexed_poly_mat in term) def gen_substitutions(): for struct in all_structs: @@ -123,47 +306,12 @@ class EquationMixin(abc.ABC): else: all_subs = None - - def subs_func(degree, idx_eq, idx_col, all_subs=all_subs, struct=struct): - if struct.re_index_func is not None: - re_index = struct.re_index_func(degree, idx_eq, idx_col) - else: - re_index = None - - if re_index is None: - n_coord = (idx_eq, idx_col) - factor = 1 - else: - n_coord = (re_index[0], re_index[1]) - factor = re_index[2] - - if all_subs is not None and degree in all_subs: - all_degree_subs = all_subs[degree] - - if n_coord in all_degree_subs: - subs_val = all_degree_subs[n_coord] * factor - else: - subs_val = None - - elif struct.subs_func is not None: - sub_value = struct.subs_func(degree, n_coord[0], n_coord[1]) - - if sub_value is not None: - subs_val = sub_value * factor - else: - subs_val = None - - else: - subs_val = None - - return n_coord, factor, subs_val - - yield struct, subs_func + yield struct, all_subs subs_dict = dict(gen_substitutions()) - terms = collections.defaultdict(lambda: collections.defaultdict(lambda: collections.defaultdict(int))) + terms = collections.defaultdict(lambda: collections.defaultdict(float)) for left, right in self.terms: @@ -172,13 +320,21 @@ class EquationMixin(abc.ABC): for d1 in left.degrees: - n_param_1 = binom(self.n_var+d1-1, d1) - offset_1 = offset_dict[(left, d1)] + if subs_1 is not None and d1 in subs_1: + subs_1_d = subs_1[d1] + else: + subs_1_d = None + + offset_1 = self.offset_dict.get((left, d1), 0) for d2 in right.degrees: - n_param_2 = binom(self.n_var+d2-1, d2) - offset_2 = offset_dict[(right, d2)] + if subs_2 is not None and d2 in subs_2: + subs_2_d = subs_2[d2] + else: + subs_2_d = None + + offset_2 = self.offset_dict.get((right, d2), 0) total_degree = d1 + d2 @@ -199,74 +355,150 @@ class EquationMixin(abc.ABC): # (1,0) -> x2*x1 instead of (0,1)->x1*x2 if non_increasing(grp1) and non_increasing(grp2): - left_idx = variable_to_index(self.n_var, grp1) - d_right_idx = variable_to_index(self.n_var, grp2) + left_col_default = variable_to_index(self.n_var, grp1) + right_col_default = variable_to_index(self.n_var, grp2) # for each column of the poly matrix, and row of the poly vector - for idx_col in range(self.n_var): + for left_poly_col in range(self.n_var): - if right.re_index_func_2 is None: - re_index_2 = None + right_poly_row = left_poly_col + + if right.re_index is not None: + re_index_2 = right.re_index(d2, right_poly_row, 0, grp2) else: - re_index_2 = right.re_index_func_2(d2, idx_col, grp2) + re_index_2 = None if re_index_2 is None: - v_idx_row = idx_col - factor_22 = 1 - right_idx = d_right_idx + n_right_poly_row, factor_2, right_col = right_poly_row, 1, right_col_default else: - v_idx_row, n_grp2, factor_22 = re_index_2 - right_idx = variable_to_index(self.n_var, n_grp2) - - n_coord_2, factor_21, subs_val_2 = subs_2(d2, v_idx_row, 0) - - factor_2 = factor_21 * factor_22 + n_right_poly_row, _, n_grp2, factor_2 = re_index_2 + right_col = variable_to_index(self.n_var, n_grp2) + + key_2 = (n_right_poly_row, 0, right_col) + if subs_2_d is not None: + try: + subs_val_2 = subs_2_d[key_2] + except KeyError: + subs_val_2 = None + else: + subs_val_2 = None if factor_2 == 0 or subs_val_2 == 0: continue - # for each polynomial equation - for idx_eq in range(self.n_var): + right_row = n_right_poly_row + right_param_idx = int(offset_2 + right_row + right_col * self.n_var) - n_coord_1, factor_1, subs_val_1 = subs_1(d1, idx_eq, idx_col) + # for each polynomial equation + for left_poly_row in range(self.n_var): + + if left.re_index is not None: + re_index_1 = left.re_index(d1, left_poly_row, left_poly_col, grp1) + else: + re_index_1 = None + + if re_index_1 is None: + n_left_poly_row, n_left_poly_col, factor_1 = left_poly_row, left_poly_col, 1 + left_col = left_col_default + else: + n_left_poly_row, n_left_poly_col, n_grp1, factor_1 = re_index_1 + left_col = variable_to_index(self.n_var, n_grp1) + + key_1 = (n_left_poly_row, n_left_poly_col, left_col) + if subs_1_d is not None: + try: + subs_val_1 = subs_1_d[key_1] + except KeyError: + subs_val_1 = None + else: + subs_val_1 = None if factor_1 == 0 or subs_val_1 == 0: continue - - left_param_idx = int(offset_1 + left_idx + (self.n_var * n_coord_1[0] + n_coord_1[1]) * n_param_1) - right_param_idx = int(offset_2 + right_idx + n_coord_2[0] * n_param_2) + + left_row = n_left_poly_row + n_left_poly_col * self.n_var + left_param_idx = int(offset_1 + left_row + left_col * n_var_2) + + # print(left_poly_row) + # print(f'{left_row=}') + # print(f'{left_param_idx=}') + + total_factor = factor_1 * factor_2 match (subs_val_1, subs_val_2): case (None, None): - col_idx = variable_to_index(n_param, (left_param_idx, right_param_idx)) - # col_idx = (left_param_idx, right_param_idx) + col_idx = (left_param_idx, right_param_idx) degree = 2 - value = factor_1*factor_2 + value = total_factor - terms[1][(idx_eq, perm)][left_param_idx] += 2*value - terms[1][(idx_eq, perm)][right_param_idx] += 2*value - terms[0][(idx_eq, perm)][0] += value + # terms[1][(idx_eq, perm)][left_param_idx] += 2*value + # terms[1][(idx_eq, perm)][right_param_idx] += 2*value + # terms[0][(idx_eq, perm)][0] += value case (subs_val, None): - col_idx = right_param_idx - # col_idx = (right_param_idx,) + col_idx = (right_param_idx,) degree = 1 - value = subs_val_1*factor_2 + value = subs_val_1*total_factor - terms[degree][(idx_eq, perm)][0] += value + # terms[degree][(idx_eq, perm)][0] += value case (None, subs_val): - col_idx = left_param_idx - # col_idx = (left_param_idx,) + col_idx = (left_param_idx,) degree = 1 - value = subs_val_2*factor_1 + value = subs_val_2*total_factor + + # terms[degree][(idx_eq, perm)][0] += value case _: - degree, col_idx, value = 0, tuple(), subs_val_1*subs_val_2*factor_1*factor_2 + degree, col_idx, value = 0, tuple(), subs_val_1*subs_val_2*total_factor + + terms[degree][left_poly_row, perm, col_idx] += value + + return EqualityConstraintImpl( + terms=terms, + n_param=self.n_param, + ) - terms[degree][(idx_eq, perm)][col_idx] += value + def matrix_to_poly(self, struct, x, param, tol=None): + assert len(x) == self.n_var, f'variable {x} needs to be of length {self.n_var}' - return terms, offset_dict, n_param + n_var_2 = self.n_var**2 + + if struct.is_vector: + n_col = 1 + + else: + n_col = self.n_var + + sym_expr = [[0 for _ in range(n_col)] for _ in range(self.n_var)] + + for degree in struct.degrees: + offset = self.offset_dict[(struct, degree)] + # number_of_terms = int(binom(self.n_var+degree-1, degree)) + + def write_to_expr(row, col, val, term=1): + if tol is None or val <= -tol or tol <= val: + sym_expr[row][col] += val*term + + if 0 == degree: + for row in range(self.n_var): + for col in range(n_col): + write_to_expr(row, col, param[offset + row + col * self.n_var]) + + else: + def gen_vector(): + for comb in itertools.combinations_with_replacement(range(self.n_var), degree): + *_, last = itertools.accumulate(comb, lambda acc, idx: acc*x[idx], initial=1) + yield last + vector = list(gen_vector()) + + for row in range(self.n_var): + for col in range(n_col): + for idx, term in enumerate(vector): + # print(f'{offset + (row + col * self.n_var) * number_of_terms + idx=}, {param[offset + (row + col * self.n_var) * number_of_terms + idx]=}') + write_to_expr(row, col, param[offset + row + col * self.n_var + idx * n_var_2], term) + + return sym_expr ######################################## # Classes @@ -276,9 +508,14 @@ class PolyMatrix(PolyMatrixMixin): pass -class Equation(EquationMixin): +class EqualityConstraint(EqualityConstraintMixin): + pass + + +class PolyEquation(PolyEquationMixin): pass + ######################################## # Implementations ######################################## @@ -287,15 +524,22 @@ class Equation(EquationMixin): class PolyMatrixImpl(PolyMatrix): degrees: list[int] subs: dict[int, dict[tuple[int, int], float]] - subs_func: typing.Callable[[int, int, int], tuple[float]] - re_index: dict[int, dict[tuple[int, int], tuple[int, int, float]]] - re_index_func: typing.Callable[[int, int], tuple[int, int, float]] - re_index_func_2: typing.Callable[[int, int, tuple[int, ...]], tuple[int, tuple[int, ...], float]] + re_index: typing.Callable[[int, int, int, tuple[int, ...]], tuple[int, int, int, tuple[int, ...], float]] + is_constant: bool is_vector: bool @dataclass_abc.dataclass_abc(frozen=True) -class EquationImpl(Equation): +class EqualityConstraintImpl(EqualityConstraintMixin): + terms: dict[int, dict[tuple[int, tuple, int], float]] + # offset_dict: dict[tuple[PolyMatrixMixin, int], int] + # param_dict: dict[tuple[PolyMatrixMixin, int], int] + n_param: int + # n_var: int + + +@dataclass_abc.dataclass_abc(frozen=True) +class EquationImpl(PolyEquation): terms: list[tuple[PolyMatrix, PolyMatrix]] n_var: int @@ -306,40 +550,34 @@ class EquationImpl(Equation): def init_poly_vector( degrees: list[int] = None, subs: dict[int, dict[tuple[int, int], float]] = None, - subs_func: typing.Callable[[int, int, int], tuple[float]] = None, - re_index: dict[int, dict[tuple[int, int], tuple[int, int, float]]] = None, - re_index_func: typing.Callable[[int, int], tuple[int, int, float]] = None, - re_index_func_2: typing.Callable[[int, int], tuple[int, int, float]] = None, + re_index: typing.Callable[[int, int, int, tuple[int, ...]], tuple[int, int, int, tuple[int, ...], float]] = None, + is_constant: bool = None, ): return init_poly_matrix( degrees=degrees, subs=subs, - subs_func=subs_func, re_index=re_index, - re_index_func=re_index_func, is_vector=True, - re_index_func_2=re_index_func_2, + is_constant=is_constant, ) def init_poly_matrix( degrees: list[int] = None, subs: dict[int, dict[tuple[int, int], float]] = None, - subs_func: typing.Callable[[int, int, int], tuple[float]] = None, - re_index: dict[int, dict[tuple[int, int], tuple[int, int, float]]] = None, - re_index_func: typing.Callable[[int, int], tuple[int, int, float]] = None, - re_index_func_2: typing.Callable[[int, int], tuple[int, int, float]] = None, + re_index: typing.Callable[[int, int, int, tuple[int, ...]], tuple[int, int, int, tuple[int, ...], float]] = None, is_vector: bool = None, + is_constant: bool = None, ): if degrees is None: assert isinstance(subs, dict) degrees = list(subs.keys()) - if subs is None and subs_func is None: - subs = {} - - if re_index is None and re_index_func is None: - re_index = {} + if is_constant is None: + if subs is None: + is_constant = False + else: + is_constant = True if is_vector is None: is_vector = False @@ -347,10 +585,8 @@ def init_poly_matrix( return PolyMatrixImpl( degrees=degrees, subs=subs, - subs_func=subs_func, re_index = re_index, - re_index_func = re_index_func, - re_index_func_2 = re_index_func_2, + is_constant = is_constant, is_vector = is_vector, ) diff --git a/polymatrix/sympyutils.py b/polymatrix/sympyutils.py index e2c37d8..6fe7938 100644 --- a/polymatrix/sympyutils.py +++ b/polymatrix/sympyutils.py @@ -1,11 +1,13 @@ +import collections import itertools import numpy as np import scipy.sparse +import sympy from polymatrix.utils import variable_powers_to_index -def poly_to_data_coord(poly_list, power = None): +def poly_to_data_coord(poly_list, x, degree = None): """ poly_list = [ poly(x1*x3**2, x) @@ -13,70 +15,71 @@ def poly_to_data_coord(poly_list, power = None): power: up to which power """ - if power is None: - power = max(degree for poly in poly_list for degree in poly.degree_list()) + sympy_poly_list = tuple(tuple(sympy.poly(p, x) for p in inner_poly_list) for inner_poly_list in poly_list) - def all_equal(iterable): - g = itertools.groupby(iterable) - return next(g, True) and not next(g, False) + if degree is None: + degree = max(degree for inner_poly_list in sympy_poly_list for poly in inner_poly_list for degree in poly.degree_list()) - assert all_equal((p.gens for p in poly_list)), 'all polynomials need to have identical generators' + # def all_equal(iterable): + # g = itertools.groupby(iterable) + # return next(g, True) and not next(g, False) + + # assert all_equal((p.gens for p in poly_list)), 'all polynomials need to have identical generators' def gen_power_mat(): # for all powers generate a matrix - for current_power in range(power + 1): + for current_degree in range(degree + 1): def gen_value_index(): # each polynomial defines a row in the matrix - for row, p in enumerate(poly_list): + for poly_row, inner_poly_list in enumerate(sympy_poly_list): + + for poly_col, p in enumerate(inner_poly_list): - # a5 x1 x3**2 -> c=a5, m=(1, 0, 2) - for c, m in zip(p.coeffs(), p.monoms()): + # a5 x1 x3**2 -> c=a5, m=(1, 0, 2) + for c, m in zip(p.coeffs(), p.monoms()): - if sum(m) == current_power: + if sum(m) == current_degree: - index = variable_powers_to_index(m) - yield (row, index), c + index = variable_powers_to_index(m) + yield (poly_row, poly_col, index), c - # yield list(zip(*gen_value_index())) - data = dict(gen_value_index()) + data = dict(gen_value_index()) | collections.defaultdict(float) if len(data) > 0: - yield current_power, data + yield current_degree, data return dict(gen_power_mat()) -def poly_to_matrix(poly_list, power = None): +def poly_to_matrix(poly_list, x, power = None): """ """ - data_coord_dict = poly_to_data_coord(poly_list, power) + data_coord_dict = poly_to_data_coord(poly_list, x, power) - n_free_symbols = len(poly_list[0].gens) + # n_free_symbols = len(poly_list[0][0].gens) + n_free_symbols = len(x) def gen_power_mat(): # for all powers generate a matrix - for current_power, data_coord in data_coord_dict: + for current_degree, data_coord in data_coord_dict: # empty matrix - shape = (len(poly_list), n_free_symbols**current_power) + shape = (len(poly_list), n_free_symbols**current_degree) # m = np.zeros((len(poly_list), n_free_symbols**current_power)) # fill matrix if len(data_coord) == 0: - yield np.zeros((len(poly_list), n_free_symbols**current_power)) + yield np.zeros((len(poly_list), n_free_symbols**current_degree)) else: rows, cols, data = list(zip(*data_coord)) yield scipy.sparse.coo_matrix((data, (rows, cols)), dtype=np.double, shape=shape) - - # m[rows, cols] = data - # yield m return list(gen_power_mat()) |