diff options
author | Michael Schneeberger <michael.schneeberger@fhnw.ch> | 2022-08-04 15:23:02 +0200 |
---|---|---|
committer | Michael Schneeberger <michael.schneeberger@fhnw.ch> | 2022-08-04 15:23:02 +0200 |
commit | de0f75c08b6d18b52dd5e595d82eecff15e02895 (patch) | |
tree | c06c731f6a9cd8ca7013e8f24c66a8e4c182ea02 /README.md | |
parent | add max_degree, max and filter operator (diff) | |
download | polymatrix-de0f75c08b6d18b52dd5e595d82eecff15e02895.tar.gz polymatrix-de0f75c08b6d18b52dd5e595d82eecff15e02895.zip |
clean up and restructurings
Diffstat (limited to 'README.md')
-rw-r--r-- | README.md | 51 |
1 files changed, 50 insertions, 1 deletions
@@ -1 +1,50 @@ -# Polynomial matrix library +# Multivariate polynomial library + +`polymatrix` is a library to represent and operate on multivariate polynomials. + +It is currently mainly used to define Sum Of Squares optimization problems. + +Some aspects of the library + +* it has a lazy behavior: + * the library implements operators to build polynomial expression + * the actual polynomial representation is created by calling the `apply(state)` method on the polynomial expression +* a `sympy` expression can be converted to a polynomial expression using the `polymatrix.from_sympy` function +* multiple polynomial expressions are combined using functions like `polymatrix.v_stack` or `polymatrix.block_diag`. +* polynomial expressions are manipulated using bounded functions like `diff`, `reshape`, `substitute`, `sum` or `to_constant` (see `polymatrix/expression/mixins/expressionmixin.py`) +* an expression can be converted to matrix representation using `polymatrix.to_matrix_repr`. Again, to get the actual representation the `apply(state)` method needs to be called. + +## Example + +``` python +import sympy +import polymatrix + +state = polymatrix.init_expression_state() + +x1, x2 = sympy.symbols('x1, x2') +x = polymatrix.from_((x1, x2)) + +f1 = polymatrix.from_(x1 + x2) +f2 = polymatrix.from_(x1 + x1*x2) + +expr = f1 + f2 + +# prints the data structure of the expression +# ExpressionImpl(underlying=AdditionExprImpl(left=FromSympyExprImpl(data=((x1 + x2,),)), right=FromSympyExprImpl(data=((x1*x2 + x1,),)))) +print(expr) + +state, poly_matrix = expr.apply(state) + +# prints the data structure of the polynomial matrix +# PolyMatrixImpl(terms={(0, 0): {((0, 1), (1, 1)): 1, ((0, 1),): 2, ((1, 1),): 1}}, shape=(1, 1)) +print(poly_matrix) + +state, matrix_repr = polymatrix.to_matrix_repr((expr,), x).apply(state) + +# prints the numpy matrix representations of the polynomial matrix +# array([[2., 1.]]) +# array([[0. , 0.5, 0.5, 0. ]]) +print(matrix_repr.data[0][1]) +print(matrix_repr.data[0][2].toarray()) +``` |