summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--polymatrix/expression/mixins/degreeexprmixin.py48
1 files changed, 20 insertions, 28 deletions
diff --git a/polymatrix/expression/mixins/degreeexprmixin.py b/polymatrix/expression/mixins/degreeexprmixin.py
index 5518d0a..522af7c 100644
--- a/polymatrix/expression/mixins/degreeexprmixin.py
+++ b/polymatrix/expression/mixins/degreeexprmixin.py
@@ -5,13 +5,18 @@ from polymatrix.polymatrix.init import init_poly_matrix
from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin
from polymatrix.polymatrix.abc import PolyMatrix
from polymatrix.expressionstate.abc import ExpressionState
+from polymatrix.polymatrix.index import MatrixIndex, PolyMatrixDict, PolyDict, MonomialIndex
from polymatrix.utils.getstacklines import FrameSummary
-# NP: IIRC this gets the highest degree.
-# NP: If I am correct consider renaming to MaxDegree
-# NP: (also what is the use case?)
class DegreeExprMixin(ExpressionBaseMixin):
+ """
+ Elementwise maximum degree.
+
+ The result is a constant matrix with each entry containing the highest
+ degree of the polynomial in the entry of the argument.
+ """
+
@property
@abc.abstractmethod
def underlying(self) -> ExpressionBaseMixin:
@@ -23,32 +28,19 @@ class DegreeExprMixin(ExpressionBaseMixin):
...
# overwrites the abstract method of `ExpressionBaseMixin`
- def apply(
- self,
- state: ExpressionState,
- ) -> tuple[ExpressionState, PolyMatrix]:
- state, underlying = self.underlying.apply(state=state)
-
- poly_matrix_data = {}
-
- for row in range(underlying.shape[0]):
- for col in range(underlying.shape[1]):
-
- polynomial = underlying.get_poly(row, col)
+ def apply(self, state: ExpressionState) -> tuple[ExpressionState, PolyMatrix]:
- if polynomial is None or len(polynomial) == 0:
- poly_matrix_data[row, col] =0
+ state, p = self.underlying.apply(state=state)
+ result = PolyMatrixDict.empty()
- else:
- def gen_degrees():
- for monomial, _ in polynomial.items():
- yield sum(count for _, count in monomial)
-
- poly_matrix_data[row, col] = {tuple(): max(gen_degrees())}
+ for entry, poly in p.entries():
+ max_degree = 0
+ for monomial, coeff in poly.terms():
+ if monomial.degree > max_degree:
+ max_degree = monomial.degree
- poly_matrix = init_poly_matrix(
- data=poly_matrix_data,
- shape=underlying.shape,
- )
+ result[*entry] = PolyDict({
+ MonomialIndex.constant(): max_degree
+ })
- return state, poly_matrix
+ return state, init_poly_matrix(data=result, shape=p.shape)