summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--README.md25
1 files changed, 17 insertions, 8 deletions
diff --git a/README.md b/README.md
index 98ba196..6ce4eb8 100644
--- a/README.md
+++ b/README.md
@@ -2,17 +2,26 @@
`polymatrix` is a library to represent and operate on multivariate polynomials.
-It is currently mainly used to define Sum Of Squares optimization problems.
+It is used to define Sum Of Squares optimization problems.
-Some aspects of the library
+## Key aspects
-* it has a lazy behavior:
+Some aspects of the library:
+
+* it has a lazy behavior
* the library implements operators to build polynomial expression
- * the actual polynomial representation is created by calling the `apply(state)` method on the polynomial expression
-* a `sympy` expression can be converted to a polynomial expression using the `polymatrix.from_sympy` function
-* multiple polynomial expressions are combined using functions like `polymatrix.v_stack` or `polymatrix.block_diag`.
-* polynomial expressions are manipulated using bounded functions like `diff`, `reshape`, `substitute`, `sum` or `to_constant` (see `polymatrix/expression/mixins/expressionmixin.py`)
-* an expression can be converted to matrix representation using `polymatrix.to_matrix_repr`. Again, to get the actual representation the `apply(state)` method needs to be called.
+ * the actual polynomial is created by calling the [`apply(state)`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/expression/mixins/expressionbasemixin.py) method on the polynomial expression
+* a `sympy` expression is converted to a polynomial expression using the [`polymatrix.from_sympy`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/__init__.py) function
+* multiple polynomial expressions are combined using functions like
+ * [`polymatrix.v_stack`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/__init__.py)
+ * [`polymatrix.block_diag`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/__init__.py).
+* polynomial expressions are manipulated using bounded functions like
+ * [`diff`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/expression/mixins/expressionmixin.py),
+ * [`reshape`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/expression/mixins/expressionmixin.py)
+ * [`substitute`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/expression/mixins/expressionmixin.py)
+ * [`sum`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/expression/mixins/expressionmixin.py)
+ * [`to_constant`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/expression/mixins/expressionmixin.py)
+* an expression is converted to matrix representation using [`polymatrix.to_matrix_repr`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/__init__.py). Again, to get the actual representation the [`apply(state)`](https://gitlab.nccr-automation.ch/michael.schneeberger/polymatrix/-/blob/main/polymatrix/statemonad/mixins/statemonadmixin.py) method needs to be called.
## Example