summaryrefslogtreecommitdiffstats
path: root/polymatrix/expression/mixins/blockdiagexprmixin.py
blob: 4688139f1a4669d5f03fa914b88427e73cc6d552 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import abc
import itertools
import dataclassabc

from polymatrix.polymatrix.mixins import PolyMatrixMixin
from polymatrix.polymatrix.abc import PolyMatrix
from polymatrix.expressionstate.abc import ExpressionState
from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin


class BlockDiagExprMixin(ExpressionBaseMixin):
    """
    Create a block diagonal polymatrix from provided polymatrices

        [[x1]], [[x2], [x3]]  ->  [[x1, 0], [0, x2], [0, x3]].
    """

    @property
    @abc.abstractmethod
    def underlying(self) -> tuple[ExpressionBaseMixin, ...]: ...

    # overwrites the abstract method of `ExpressionBaseMixin`
    def apply(
        self,
        state: ExpressionState,
    ) -> tuple[ExpressionState, PolyMatrix]:
        all_underlying = []
        for expr in self.underlying:
            state, polymat = expr.apply(state=state)
            all_underlying.append(polymat)

        @dataclassabc.dataclassabc(frozen=True)
        class BlockDiagPolyMatrix(PolyMatrixMixin):
            all_underlying: tuple[PolyMatrixMixin]
            underlying_row_col_range: tuple[tuple[int, int], ...]
            shape: tuple[int, int]

            def get_poly(self, row: int, col: int) -> dict[tuple[int, ...], float]:
                for polymatrix, ((row_start, col_start), (row_end, col_end)) in zip(
                    self.all_underlying, self.underlying_row_col_range
                ):
                    if row_start <= row < row_end:
                        if col_start <= col < col_end:
                            return polymatrix.get_poly(
                                row=row - row_start,
                                col=col - col_start,
                            )

                        else:
                            return None

                raise Exception(f"row {row} is out of bounds")

        underlying_row_col_range = tuple(
            itertools.pairwise(
                itertools.accumulate(
                    (expr.shape for expr in all_underlying),
                    lambda acc, v: tuple(v1 + v2 for v1, v2 in zip(acc, v)),
                    initial=(0, 0),
                )
            )
        )

        shape = underlying_row_col_range[-1][1]

        polymatrix = BlockDiagPolyMatrix(
            all_underlying=all_underlying,
            shape=shape,
            underlying_row_col_range=underlying_row_col_range,
        )

        return state, polymatrix