1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
import abc
import collections
import dataclasses
import itertools
import typing
from polymatrix.expression.init.initderivativekey import init_derivative_key
from polymatrix.expression.init.initpolymatrix import init_poly_matrix
from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin
from polymatrix.expression.polymatrix import PolyMatrix
from polymatrix.expression.expressionstate import ExpressionState
from polymatrix.expression.utils.getvariableindices import get_variable_indices
class DerivativeExprMixin(ExpressionBaseMixin):
@property
@abc.abstractmethod
def underlying(self) -> ExpressionBaseMixin:
...
@property
@abc.abstractmethod
def variables(self) -> typing.Union[tuple, ExpressionBaseMixin]:
...
@property
@abc.abstractmethod
def introduce_derivatives(self) -> bool:
...
# overwrites abstract method of `ExpressionBaseMixin`
def _apply(
self,
state: ExpressionState,
) -> tuple[ExpressionState, PolyMatrix]:
state, underlying = self.underlying.apply(state=state)
state, diff_wrt_variables = get_variable_indices(state, self.variables)
def get_derivative_terms(
monomial_terms,
diff_wrt_variable: int,
state: ExpressionState,
considered_variables: set,
):
if self.introduce_derivatives:
def gen_new_variables():
for monomial in monomial_terms.keys():
for var in monomial:
if var not in diff_wrt_variables and var not in considered_variables:
yield var
new_variables = set(gen_new_variables())
new_considered_variables = considered_variables | new_variables
def acc_state_candidates(acc, new_variable):
state, candidates = acc
key = init_derivative_key(
variable=new_variable,
with_respect_to=diff_wrt_variable,
)
state = state.register(key=key, n_param=1)
state, auxillary_derivation_terms = get_derivative_terms(
monomial_terms=state.auxillary_equations[new_variable],
diff_wrt_variable=diff_wrt_variable,
state=state,
considered_variables=new_considered_variables,
)
if 1 < len(auxillary_derivation_terms):
derivation_variable = state.offset_dict[key][0]
state = dataclasses.replace(
state,
auxillary_equations=state.auxillary_equations | {derivation_variable: auxillary_derivation_terms},
)
return state, candidates + (new_variable,)
else:
return state, candidates
*_, (state, confirmed_variables) = itertools.accumulate(
new_variables,
acc_state_candidates,
initial=(state, tuple()),
)
else:
confirmed_variables = tuple()
derivation_terms = collections.defaultdict(float)
for monomial, value in monomial_terms.items():
# count powers for each variable
monomial_cnt = dict(collections.Counter(monomial))
def differentiate_monomial(dependent_variable, derivation_variable=None):
def gen_diff_monomial():
for current_variable, current_count in monomial_cnt.items():
if current_variable is dependent_variable:
sel_counter = current_count - 1
else:
sel_counter = current_count
for _ in range(sel_counter):
yield current_variable
if derivation_variable is not None:
yield derivation_variable
diff_monomial = tuple(sorted(gen_diff_monomial()))
return diff_monomial, value * monomial_cnt[dependent_variable]
if diff_wrt_variable in monomial_cnt:
diff_monomial, value = differentiate_monomial(diff_wrt_variable)
derivation_terms[diff_monomial] += value
for candidate_variable in monomial_cnt.keys():
if candidate_variable in considered_variables or candidate_variable in confirmed_variables:
key = init_derivative_key(
variable=candidate_variable,
with_respect_to=diff_wrt_variable,
)
derivation_variable = state.offset_dict[key][0]
diff_monomial, value = differentiate_monomial(
dependent_variable=candidate_variable,
derivation_variable=derivation_variable,
)
derivation_terms[diff_monomial] += value
return state, dict(derivation_terms)
terms = {}
for row in range(underlying.shape[0]):
try:
underlying_terms = underlying.get_poly(row, 0)
except KeyError:
continue
# derivate each variable and map result to the corresponding column
for col, diff_wrt_variable in enumerate(diff_wrt_variables):
state, derivation_terms = get_derivative_terms(
monomial_terms=underlying_terms,
diff_wrt_variable=diff_wrt_variable,
state=state,
considered_variables=set(),
)
if 0 < len(derivation_terms):
terms[row, col] = derivation_terms
poly_matrix = init_poly_matrix(
terms=terms,
shape=(underlying.shape[0], len(diff_wrt_variables)),
)
return state, poly_matrix
# def get_derivative_terms(
# monomial_terms,
# diff_wrt_variable: int,
# state: PolyMatrixExprState,
# considered_variables: set,
# # implement_derivation: bool,
# ):
# derivation_terms = collections.defaultdict(float)
# other_independent_variables = tuple(var for var in diff_wrt_variables if var is not diff_wrt_variable)
# # print(other_independent_variables)
# # print(tuple(variable for monomial in monomial_terms.keys() for variable in monomial))
# if sum(variable not in other_independent_variables for monomial in monomial_terms.keys() for variable in monomial) < 2:
# return {}, state
# # if not implement_derivation:
# # implement_derivation = any(diff_wrt_variable in monomial for monomial in monomial_terms.keys())
# for monomial, value in monomial_terms.items():
# # count powers for each variable
# monomial_cnt = dict(collections.Counter(monomial))
# def differentiate_monomial(dependent_variable, derivation_variable=None):
# def gen_diff_monomial():
# for current_variable, current_count in monomial_cnt.items():
# if current_variable is dependent_variable:
# sel_counter = current_count - 1
# else:
# sel_counter = current_count
# for _ in range(sel_counter):
# yield current_variable
# if derivation_variable is not None:
# yield derivation_variable
# diff_monomial = tuple(gen_diff_monomial())
# return diff_monomial, value * monomial_cnt[dependent_variable]
# if diff_wrt_variable in monomial_cnt:
# diff_monomial, value = differentiate_monomial(diff_wrt_variable)
# derivation_terms[diff_monomial] += value
# if self.introduce_derivatives:
# def gen_derivation_keys():
# for variable in monomial_cnt.keys():
# if variable not in diff_wrt_variables:
# yield variable
# candidate_variables = tuple(gen_derivation_keys())
# new_considered_derivations = considered_variables | set(candidate_variables)
# for candidate_variable in candidate_variables:
# # introduce new auxillary equation
# if candidate_variable not in considered_variables:
# auxillary_derivation_terms, state = get_derivative_terms(
# monomial_terms=state.auxillary_equations[candidate_variable],
# diff_wrt_variable=diff_wrt_variable,
# state=state,
# considered_variables=new_considered_derivations,
# # implement_derivation=implement_derivation,
# )
# if 0 < len(auxillary_derivation_terms):
# key = init_derivative_key(
# variable=candidate_variable,
# with_respect_to=diff_wrt_variable,
# )
# state = state.register(key=key, n_param=1)
# derivation_variable = state.offset_dict[key][0]
# state = dataclasses.replace(
# state,
# auxillary_equations=state.auxillary_equations | {derivation_variable: auxillary_derivation_terms},
# )
# else:
# key = init_derivative_key(
# variable=candidate_variable,
# with_respect_to=diff_wrt_variable,
# )
# state = state.register(key=key, n_param=1)
# derivation_variable = state.offset_dict[key][0]
# diff_monomial, value = differentiate_monomial(
# dependent_variable=candidate_variable,
# derivation_variable=derivation_variable,
# )
# derivation_terms[diff_monomial] += value
# return dict(derivation_terms), state
# terms = {}
# for row in range(self.shape[0]):
# try:
# underlying_terms = underlying.get_poly(row, 0)
# except KeyError:
# continue
# # derivate each variable and map result to the corresponding column
# for col, diff_wrt_variable in enumerate(diff_wrt_variables):
# derivation_terms, state = get_derivative_terms(
# monomial_terms=underlying_terms,
# diff_wrt_variable=diff_wrt_variable,
# state=state,
# considered_variables=set(),
# # implement_derivation=False,
# )
# if 0 < len(derivation_terms):
# terms[row, col] = derivation_terms
# poly_matrix = init_poly_matrix(
# terms=terms,
# shape=self.shape,
# )
# return state, poly_matrix
# state = [state]
# state, underlying = self.underlying.apply(state=state)
# match self.variables:
# case ExpressionBaseMixin():
# assert self.variables.shape[1] == 1
# state, dependent_variables = self.variables.apply(state)
# def gen_indices():
# for row in range(dependent_variables.shape[0]):
# for monomial in dependent_variables.get_poly(row, 0).keys():
# yield monomial[0]
# variable_indices = tuple(sorted(gen_indices()))
# case _:
# def gen_indices():
# for variable in self.variables:
# if variable in state.offset_dict:
# yield state.offset_dict[variable][0]
# variable_indices = tuple(sorted(gen_indices()))
# terms = {}
# derivations_keys = set()
# # derivate each variable and map result to the corresponding column
# for col, derivation_variable in enumerate(variable_indices):
# def get_derivative_terms(monomial_terms):
# terms_row_col = collections.defaultdict(float)
# for monomial, value in monomial_terms.items():
# # count powers for each variable
# monomial_cnt = dict(collections.Counter(monomial))
# variable_candidates = tuple()
# if derivation_variable in monomial_cnt:
# variable_candidates += ((derivation_variable, None),)
# if self.introduce_derivatives:
# def gen_dependent_variables():
# for dependent_variable in monomial_cnt.keys():
# if dependent_variable not in variable_indices:
# derivation_key = init_derivative_key(
# variable=dependent_variable,
# with_respect_to=derivation_variable,
# )
# derivations_keys.add(derivation_key)
# state = state.register(key=derivation_key, n_param=1)
# yield dependent_variable, derivation_key
# variable_candidates += tuple(gen_dependent_variables())
# for variable_candidate, derivation_key in variable_candidates:
# def generate_monomial():
# for current_variable, current_count in monomial_cnt.items():
# if current_variable is variable_candidate:
# sel_counter = current_count - 1
# else:
# sel_counter = current_count
# for _ in range(sel_counter):
# yield current_variable
# if derivation_key is not None:
# yield state.offset_dict[derivation_key][0]
# col_monomial = tuple(generate_monomial())
# terms_row_col[col_monomial] += value * monomial_cnt[variable_candidate]
# return dict(terms_row_col)
# for row in range(self.shape[0]):
# try:
# underlying_terms = underlying.get_poly(row, 0)
# except KeyError:
# continue
# derivative_terms = get_derivative_terms(underlying_terms)
# if 0 < len(derivative_terms):
# terms[row, col] = derivative_terms
# derivation_variables = collections.defaultdict(list)
# for derivation_key in derivations_keys:
# derivation_variables[derivation_key.with_respect_to].append(derivation_key)
# aux_der_terms = []
# for derivation_variable, derivation_keys in derivation_variables.items():
# dependent_variables = tuple(derivation_key.variable for derivation_key in derivation_keys)
# for aux_terms in state.auxillary_equations:
# # only intoduce a new auxillary equation if there is a monomial containing at least one dependent variable
# if any(variable in dependent_variables for monomial in aux_terms.keys() for variable in monomial):
# terms_row_col = collections.defaultdict(float)
# # for each monomial
# for aux_monomial, value in aux_terms.items():
# # count powers for each variable
# monomial_cnt = dict(collections.Counter(aux_monomial))
# variable_candidates = tuple()
# if derivation_variable in monomial_cnt:
# variable_candidates += ((derivation_variable, None),)
# # add dependent variables
# variable_candidates += tuple((derivation_key.variable, derivation_key) for derivation_key in derivation_keys if derivation_key.variable in monomial_cnt)
# for variable_candidate, derivative_key in variable_candidates:
# def generate_monomial():
# for current_variable, current_count in monomial_cnt.items():
# if current_variable is variable_candidate:
# sel_counter = current_count - 1
# else:
# sel_counter = current_count
# for _ in range(sel_counter):
# yield current_variable
# if derivative_key is not None:
# yield state.offset_dict[derivative_key][0]
# col_monomial = tuple(generate_monomial())
# terms_row_col[col_monomial] += value * monomial_cnt[variable_candidate]
# if 0 < len(terms_row_col):
# aux_der_terms.append(dict(terms_row_col))
# state = dataclasses.replace(
# state,
# auxillary_equations=state.auxillary_equations + tuple(aux_der_terms),
# )
# poly_matrix = init_poly_matrix(
# terms=terms,
# shape=self.shape,
# )
# return state, poly_matrix
|