1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
from __future__ import annotations
from abc import abstractmethod
from typing_extensions import override
from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin
from polymatrix.expressionstate import ExpressionState
from polymatrix.polymatrix.index import PolyMatrixDict, PolyDict
from polymatrix.polymatrix.init import init_poly_matrix
from polymatrix.polymatrix.mixins import PolyMatrixMixin
class HessianExprMixin(ExpressionBaseMixin):
"""
Compute the hessian matrix (second derivative) of a scalar polynomial.
"""
@property
@abstractmethod
def underlying(self) -> ExpressionBaseMixin:
""" Expression to take the derivative of """
@property
@abstractmethod
def variables(self) -> ExpressionBaseMixin:
"""
Variables with respect to which the derivative is taken.
This must be a column vector.
"""
@override
def apply(self, state: ExpressionState) -> tuple[ExpressionState, PolyMatrixMixin]:
state, underlying = self.underlying.apply(state)
state, variables = self.variables.apply(state)
# Check arguments
if underlying.shape != (1, 1):
raise ValueError("Cannot take Hessian of non-scalar expression "
f"with shape {underlying.shape}")
if variables.shape[1] != 1:
raise ValueError("Cannot take variable with repect to matrix "
f"with shape {variables.shape}. It must be a column vector")
# number of variables
nvars, _ = variables.shape
variable_indices = []
for i in range(nvars):
monomials = tuple(variables.at(i, 0).monomials())
if len(monomials) > 1:
# FIXME improve error message
raise ValueError("Cannot take derivative with respect to polynomial")
monomial = monomials[0]
if monomial.degree != 1:
# FIXME improve error message
raise ValueError("Cannot take derivative with respect to non-linear term")
variable_indices.append(monomial[0].index)
# Actually compute derivative
result = PolyMatrixDict.empty()
for i in range(nvars):
# FIXME: make only upper triangular part and create symmetrix polymatrix
# FIXME: before that, take out SymmetrixPolyMatrix from SymmetrixExprMixin
# for j in range(i, nvars):
for j in range(nvars):
new_poly = PolyDict.differentiate(
PolyDict.differentiate(
underlying.scalar(),
variable_indices[j]),
variable_indices[i])
if new_poly:
result[i, j] = new_poly
return state, init_poly_matrix(result, shape=(nvars, nvars))
|