summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-05-27 18:26:39 +0200
committerNao Pross <np@0hm.ch>2024-05-27 18:26:39 +0200
commit1f5c0bfda719db6acac7b540b2ef547e52554bfc (patch)
tree93ac6264e4b61ec558bcfe1e38af646eac6d789e
parentAdd comments and docstring (diff)
downloadsumofsquares-1f5c0bfda719db6acac7b540b2ef547e52554bfc.tar.gz
sumofsquares-1f5c0bfda719db6acac7b540b2ef547e52554bfc.zip
Implement ExponentialCone in SOSProblem.apply, clean up comments
Diffstat (limited to '')
-rw-r--r--sumofsquares/problems.py44
-rw-r--r--sumofsquares/solver/cvxopt.py18
2 files changed, 40 insertions, 22 deletions
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
index 4482c1e..c313419 100644
--- a/sumofsquares/problems.py
+++ b/sumofsquares/problems.py
@@ -67,13 +67,15 @@ class ConicProblem(Problem):
types of constraints
::
- z zero cone (s = 0)
- l linear cone (s >= 0)
- b box cone (tl <= s <= tu)
- q second order cone (|s|_2 <= t)
- s positive semidefinite cone (s is PSD)
- ep exponential cone ((x,y,z) in ExpCone)
- ep* dual exponential cone ((u,v,w) in DualExpCone)
+ NAME LONG NAME MEANING
+ ---- --------------------------- ----------------------
+ z zero cone s = 0
+ l linear cone s >= 0
+ b box cone tl <= s <= tu
+ q second order cone |s|_2 <= t
+ s positive semidefinite cone s is PSD
+ e exponential cone (x,y,z) in ExpCone
+ e* dual exponential cone (u,v,w) in DualExpCone
p power cone
p* dual power cone
@@ -231,6 +233,7 @@ class SOSProblem(Problem):
# Polynomial non-negativity contraints is converted to PSD
# constraint of SOS quadratic form
if deg.scalar().constant() > 1:
+ # TODO: it seems to work fine even without .symmetric(). Why?
state, pm = c.expression.quadratic_in(x).symmetric().apply(state)
constraints.append(PositiveSemiDefinite(pm))
@@ -239,16 +242,28 @@ class SOSProblem(Problem):
state, pm = c.expression.apply(state)
constraints.append(replace(c, expression=pm))
- # PSD constraint can be passed as-is
elif isinstance(c, PositiveSemiDefinite):
state, pm = c.expression.apply(state)
+ nrows, ncols = pm.shape
+ if nrows != ncols:
+ raise ValueError(f"PSD constraint cannot contain non-square matrix of shape ({nrows, ncols})!")
+
+ # PSD constraint can be passed as-is
constraints.append(replace(c, expression=pm))
elif isinstance(c, ExponentialCone):
- raise NotImplementedError
+ state, pm = c.expression.apply(state)
+ nrows, ncols = pm.shape
+
+ if ncols != 3:
+ raise ValueError("Conic constraint must be a row vector [x, y, z] ",
+ "or for multiple constraints it must be an n x 3 "
+ f"matrix! Given expression has wrong shape {pm.shape}.")
+
+ constraints.append(replace(c, expresssion=pm))
else:
- raise NotImplementedError
+ raise NotImplementedError(f"Cannot process constraint of type {type(c)} (yet).")
return state, InternalSOSProblem(cost, tuple(constraints),
tuple(variables), polynomial_variables,
@@ -291,13 +306,13 @@ class InternalSOSProblem(Problem):
# See docstring of ConicProblem.constraints
dims: dict[str, list[int]] = {
"z": [], "l": [], "b": [], "q": [], "s": [],
- "ep": [], "ep*": [], "p": [], "p*": [],
+ "e": [], "e*": [], "p": [], "p*": [],
}
# See docstring of ConicProblem.constraints
constraints: dict[str, list[tuple[tuple[NDArray, ...], NDArray]]] = {
"z": [], "l": [], "b": [], "q": [], "s": [],
- "ep": [], "ep*": [], "p": [], "p*": [],
+ "e": [], "e*": [], "p": [], "p*": [],
}
# indices of variables in the optimization problem, sorted
@@ -352,9 +367,6 @@ class InternalSOSProblem(Problem):
constraints["l"].append((linear, constant))
elif isinstance(c, PositiveSemiDefinite):
- if nrows != ncols:
- raise ValueError(f"PSD constraint cannot contain non-square matrix of shape ({nrows, ncols})!")
-
dims["s"].append(nrows)
constraints["s"].append((linear, constant))
@@ -362,7 +374,7 @@ class InternalSOSProblem(Problem):
# Interpret row-wise
dims["ep"].extend(1 for _ in range(nrows))
for i in range(nrows):
- constraints["ep"].append((
+ constraints["e"].append((
tuple(m[i, :] for m in linear),
constant[i, :]))
diff --git a/sumofsquares/solver/cvxopt.py b/sumofsquares/solver/cvxopt.py
index 455ee5b..1c37fbe 100644
--- a/sumofsquares/solver/cvxopt.py
+++ b/sumofsquares/solver/cvxopt.py
@@ -44,10 +44,10 @@ def vectorize_matrix(m: NDArray) -> NDArray:
def solve_cone(prob: ConicProblem, verbose: bool = False,
*args, **kwargs) -> tuple[dict[OptVariable, NDArray | float], CVXOPTInfo]:
r"""
- Any `*args` and `**kwargs` other than `prob` are passed to the CVXOPT
- solver.
+ Any `*args` and `**kwargs` other than `prob` and `vebose` are passed to the
+ CVXOPT solver.
"""
- # CVXOPT can solve problems that have the form
+ # CVXOPT can solve problems that have the (primal) form
#
# minimize .5 * x.T @ P @ x + q.T @ x
#
@@ -61,7 +61,7 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
raise NotImplementedError("Automatic conversion of box constraints "
"into linear constraints is not supported yet.")
- if prob.constraints["ep"] or prob.constraints["ep*"]:
+ if prob.constraints["e"] or prob.constraints["e*"]:
raise NotSupportedBySolver("CVXOPT cannot solve problems with the exponential cone.")
if prob.constraints["p"] or prob.constraints["p*"]:
@@ -121,6 +121,13 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
# Solve the problem
# pprint({"A": A, "b": b, "G": G, "h": h})
+ # pprint(dims)
+
+ # print(A)
+ # print(b)
+
+ # print(G)
+ # print(h)
try:
if prob.is_qp:
@@ -128,7 +135,6 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
info = cvxopt.solvers.coneqp(P=P, q=q, G=G, h=h, A=A, b=b,
dims=dims, *args, **kwargs)
else:
- assert q is not None, "LP has no objective! Something is very wrong"
info = cvxopt.solvers.conelp(c=q, G=G, h=h, A=A, b=b,
*args, **kwargs)
@@ -146,7 +152,7 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
results, i = {}, 0
for variable in prob.variables:
num_indices = math.prod(variable.shape)
- values = np.array(info['x'][i:i+num_indices]).reshape(variable.shape)
+ values = np.array(info["x"][i:i+num_indices]).reshape(variable.shape)
if values.shape == (1, 1):
values = values[0, 0]