diff options
author | Nao Pross <np@0hm.ch> | 2024-05-10 22:58:39 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-05-10 22:58:39 +0200 |
commit | 3069375afe794cbd5b950d7d50ab5728cfee9cbc (patch) | |
tree | 9874d33bc437fd2a2681e6af3b74a50815ec1f36 | |
parent | Fix error in construction of multipliers for Positivstellensatz (diff) | |
download | sumofsquares-3069375afe794cbd5b950d7d50ab5728cfee9cbc.tar.gz sumofsquares-3069375afe794cbd5b950d7d50ab5728cfee9cbc.zip |
Separate out Putinar positivstellensatz as function
-rw-r--r-- | sumofsquares/__init__.py | 4 | ||||
-rw-r--r-- | sumofsquares/constraints.py | 92 | ||||
-rw-r--r-- | sumofsquares/problems.py | 77 |
3 files changed, 109 insertions, 64 deletions
diff --git a/sumofsquares/__init__.py b/sumofsquares/__init__.py index 71aafde..99438d6 100644 --- a/sumofsquares/__init__.py +++ b/sumofsquares/__init__.py @@ -51,7 +51,7 @@ from polymatrix.expression.expression import Expression from polymatrix.expressionstate.abc import ExpressionState from .abc import Problem, Result, Set, Constraint, Solver -from .constraints import ArchimedeanSet, NonNegative +from .constraints import BasicSemialgebraicSet, NonNegative from .problems import PutinarSOSProblem from .utils import partition from .variable import OptVariable, from_names @@ -62,7 +62,7 @@ def make_sos_constraint(expr: Expression, domain: Set | None = None) -> NonNegat def make_set(*polynomials: Iterable[Expression]): - return ArchimedeanSet(polynomials) + return BasicSemialgebraicSet(polynomials) def make_problem( diff --git a/sumofsquares/constraints.py b/sumofsquares/constraints.py index 61be087..4209ffe 100644 --- a/sumofsquares/constraints.py +++ b/sumofsquares/constraints.py @@ -1,15 +1,30 @@ +import math + from dataclasses import dataclass from dataclassabc import dataclassabc from typing_extensions import override -from typing import NamedTuple +from typing import Iterable + +import polymatrix as poly from polymatrix.expression.expression import Expression +from polymatrix.expressionstate.abc import ExpressionState +from polymatrix.polymatrix.abc import PolyMatrix +from polymatrix.statemonad.init import init_state_monad +from polymatrix.variable.abc import Variable from .abc import Set, Constraint +from .error import AlgebraicError +from .variable import OptVariable, from_name as opt_variable_from_name + + +# ┏━┓┏━╸╺┳╸┏━┓ +# ┗━┓┣╸ ┃ ┗━┓ +# ┗━┛┗━╸ ╹ ┗━┛ @dataclass(frozen=True) -class ArchimedeanSet(Set): +class BasicSemialgebraicSet(Set): r""" A set that is described by the intersection of the positive loci of a finite number of polynomials (under some conditions). Roughly speaking this @@ -25,18 +40,19 @@ class ArchimedeanSet(Set): \subseteq \mathbf{R}^q. This tuple stores the :math:`g_i(x)`. - - **Important note:** this package does not check whether the set is actually - Archimedean! It is assumed that the given :math:`g_i` make - :math:`\mathbf{K}` Archimedean. """ - polynomials: tuple[Expression] + polynomials: tuple[Expression, ...] def __str__(self): polynomials = ', '.join(map(str, self.polynomials)) return f"{self.__class__.__qualname__}({polynomials})" +# ┏━╸┏━┓┏┓╻┏━┓╺┳╸┏━┓┏━┓╻┏┓╻╺┳╸┏━┓ +# ┃ ┃ ┃┃┗┫┗━┓ ┃ ┣┳┛┣━┫┃┃┗┫ ┃ ┗━┓ +# ┗━╸┗━┛╹ ╹┗━┛ ╹ ╹┗╸╹ ╹╹╹ ╹ ╹ ┗━┛ + + @dataclassabc(frozen=True) class EqualToZero(Constraint): """ Constrain an expression to be equal to zero. """ @@ -60,7 +76,7 @@ class NonNegative(Constraint): understood as `expression` being SOS. """ expression: Expression - domain: ArchimedeanSet | None = None + domain: BasicSemialgebraicSet | None = None @override def __str__(self): @@ -79,3 +95,63 @@ class PositiveSemiDefinite(Constraint): @dataclassabc(frozen=True) class ExponentialCone(Constraint): expression: Expression + + +# ┏━┓┏━┓┏━┓╻╺┳╸╻╻ ╻┏━┓╺┳╸┏━╸╻ ╻ ┏━╸┏┓╻┏━┓┏━┓┏━╸╺┳╸╺━┓┏━╸ +# ┣━┛┃ ┃┗━┓┃ ┃ ┃┃┏┛┗━┓ ┃ ┣╸ ┃ ┃ ┣╸ ┃┗┫┗━┓┣━┫┣╸ ┃ ┏━┛┣╸ +# ╹ ┗━┛┗━┛╹ ╹ ╹┗┛ ┗━┛ ╹ ┗━╸┗━╸┗━╸┗━╸╹ ╹┗━┛╹ ╹┗━╸ ╹ ┗━╸┗━╸ + +def putinar_psatz( + constr: NonNegative, + variables: Iterable[OptVariable], + polynomial_variables: Iterable[Variable], + multiplier_name: str + ) -> Iterable[Constraint]: + """ + Apply Putinar's positivstellensatz to a non-negativity constraint over an + archimedean domain. + """ + if not constr.domain: + # TODO: maybe raise an exception to warn the user? + return (constr,) + + # Number of variables in the original problem + q = sum(math.prod(v.shape) for v in variables) + x = poly.v_stack((1,) + tuple(polynomial_variables)) + + new_constraints = [] + new_constr = constr.expression + + for domain_poly in constr.domain.polynomials: + # To know the degree of the domain polynomial we need to evaluate the + # expression, hence we use a monad here + def make_multiplier( state: ExpressionState) -> tuple[ExpressionState, PolyMatrix]: + state, constr_pm = constr.expression.degree().apply(state) + state, domain_poly_pm = domain_poly.degree().apply(state) + + constr_deg = constr_pm.at(0, 0).constant() + domain_poly_deg = domain_poly_pm.at(0, 0).constant() + + # degree of multiplier + d = constr_deg - domain_poly_deg + if d < 0: + raise AlgebraicError("Cannot create Positivstellensatz multiplier because " + f"constraint polynomial has degree {constr_deg} and domain " + f"polynomial {domain_poly} has degree {domain_poly_deg}") + + n = sum(math.comb(k + q - 1, k) for k in range(0, d+1)) + + # TODO: check that there is not a variable with this name already + # Coefficients of the multiplier polynomial + c = opt_variable_from_name(multiplier_name, shape=(1,n)) + multiplier = c @ x.combinations(tuple(range(d +1))) + + return multiplier.apply(state) + + m = poly.from_statemonad(init_state_monad(make_multiplier)) + + # Subtract multiplier from expression and impose that it is also SOS + new_constr -= m * domain_poly + new_constraints.append(NonNegative(m)) + + return new_constraints diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py index 3ec3f54..3105eae 100644 --- a/sumofsquares/problems.py +++ b/sumofsquares/problems.py @@ -14,11 +14,10 @@ from typing_extensions import override from polymatrix.expression.expression import Expression, VariableExpression, init_expression from polymatrix.expressionstate.abc import ExpressionState -from polymatrix.statemonad.init import init_state_monad from polymatrix.variable.abc import Variable from .abc import Problem, Constraint, Solver, Result -from .constraints import NonNegative +from .constraints import NonNegative, putinar_psatz from .error import AlgebraicError from .solver.cvxopt import solve_sos_cone as cvxopt_solve_sos_cone from .utils import partition @@ -48,6 +47,22 @@ class SOSResult(Result): @dataclassabc(frozen=True) +class SchmuedgenSOSProblem(Problem): + r""" + SOS problem with quadratic cost, linear constraints and optinally with + positivity constraints over a basic closed semialgebraic set + :math:`\mathbf{K}`. To constrain the positivity over :math:`\mathbf{K}` + this problem uses Schmüdgen's Positivstellensatz. + """ + cost: Expression + constraints: Sequence[Constraint] + variables: Sequence[OptVariable] + polynomial_variables: Sequence[Variable] + solver: Solver + state: ExpressionState + + +@dataclassabc(frozen=True) class PutinarSOSProblem(Problem): r""" SOS problem with quadratic cost, linear constraints and optinally with @@ -72,60 +87,14 @@ class PutinarSOSProblem(Problem): # Add langrange-multiplier-like polynomials to SOS constraints, while # leaving the rest untouched. - variables = tuple(self.variables) constraints, to_process = partition(need_positivstellensatz, self.constraints) + new_constraints: list[Constraint] = [] + for i, c in enumerate(to_process): + new_constraints.extend(putinar_psatz(c, self.variables, self.polynomial_variables, r"\gamma_{i}")) - # New variables and constraints that will be introduced by the - # positivstellensatz - # new_variables = [] - new_constraints = [] - - # Number of variables in the original problem - q = len(self.variables) - x = poly.v_stack((1,) + tuple(self.polynomial_variables)) - - for i, constr in enumerate(to_process): - # FIXME: this is not optimal, look into how to determine the - # smallest degree needed to make the positivstellensatz work. - new_constr = constr.expression - for domain_poly in constr.domain.polynomials: - # To know the degree of the polynomial we need to evaluate the - # expression, hence we use a monad here - def make_multiplier(state): - state, constr_pm = constr.expression.degree().apply(state) - state, domain_poly_pm = domain_poly.degree().apply(state) - - constr_deg = constr_pm.at(0, 0).constant() - domain_poly_deg = domain_poly_pm.at(0, 0).constant() - - # degree of multiplier - d = constr_deg - domain_poly_deg - if d < 0: - raise AlgebraicError("Cannot create Positivstellensatz multiplier because " - f"constraint polynomial has degree {constr_deg} and domain " - f"polynomial {domain_poly} has degree {domain_poly_deg}") - - n = sum(math.comb(k + q - 1, k) for k in range(0, d+1)) - - # TODO: check that there is not a variable with this name already - # Coefficients of the multiplier polynomial - c = opt_variable_from_name(rf"\gamma_{i}", shape=(1,n)) - multiplier = c @ x.combinations(tuple(range(d +1))) - - return multiplier.apply(state) - - m = poly.from_statemonad(init_state_monad(make_multiplier)) - - # Subtract multiplier from expression and impose that it is also SOS - new_constr -= m * domain_poly - new_constraints.append(NonNegative(m)) - - new_constraints.append(NonNegative(new_constr)) - - # FIXME: this is a dirty trick to make it work for now, - # it is not efficient, replace with correct solution - - # Convert to polymatrix object to extract variables + # Convert to polymatrix object to extract variables created by p-satz + # FIXME: this is a dirty trick to make it work for now, it is not + # efficient, is there a better way? new_state = self.state for c in new_constraints: new_state, _ = c.expression.apply(new_state) |