diff options
author | Nao Pross <np@0hm.ch> | 2024-05-28 12:12:17 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-05-28 12:12:17 +0200 |
commit | e5bbaea2d2b0192a8a45284b342a9b96dd3fc70f (patch) | |
tree | 2d593dadbdfa858bb9ee05dd666703fd9a6ae603 | |
parent | Update (empty) MOSEK and SCS interfaces (diff) | |
download | sumofsquares-e5bbaea2d2b0192a8a45284b342a9b96dd3fc70f.tar.gz sumofsquares-e5bbaea2d2b0192a8a45284b342a9b96dd3fc70f.zip |
Fix incorrect concatenation of constraints SOSProblem.apply
There is still something off, but this is a start, need to debug more
-rw-r--r-- | sumofsquares/problems.py | 64 |
1 files changed, 42 insertions, 22 deletions
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py index c313419..bfb13c3 100644 --- a/sumofsquares/problems.py +++ b/sumofsquares/problems.py @@ -10,6 +10,7 @@ import numpy as np from dataclassabc import dataclassabc from dataclasses import replace +from itertools import groupby from numpy.typing import NDArray from typing import Any, Sequence from typing_extensions import override @@ -179,14 +180,14 @@ class SOSProblem(Problem): """ Convert to internal SOS problem by applying state to the expressions. - **Technical Note:** The internal SOS problem may only constraints that - are linear in the optimization variables, hence, conversion of + **Technical Note:** The internal SOS problem may only have constraints + that are affine in the optimization variables, hence, conversion of polynomial equality / non-negativity constraints are done here. Likewise the cost function must also be reduced to quadratic expression here. """ - constraints: list[Constraint[PolyMatrixMixin]] = [] + constraints: list[Constraint] = [] state, cost = self.cost.apply(state) # Compute the polymatrix of each constraint expression. Even though the @@ -213,13 +214,12 @@ class SOSProblem(Problem): # Polynomial equality must be converted into coefficient # matching condition if deg.scalar().constant() > 1: - state, pm = c.expression.linear_in(x).apply(state) - constraints.append(replace(c, expression=pm)) + cnew = c.expression.linear_in(x) + constraints.append(replace(c, expression=cnew)) - # A normal (linear) equality + # A normal (affine) equality else: - state, pm = c.expression.apply(state) - constraints.append(replace(c, expression=pm)) + constraints.append(c) elif isinstance(c, NonNegative): if c.domain: @@ -234,38 +234,58 @@ class SOSProblem(Problem): # constraint of SOS quadratic form if deg.scalar().constant() > 1: # TODO: it seems to work fine even without .symmetric(). Why? - state, pm = c.expression.quadratic_in(x).symmetric().apply(state) - constraints.append(PositiveSemiDefinite(pm)) + cnew = c.expression.quadratic_in(x).symmetric() + constraints.append(PositiveSemiDefinite(cnew)) - # A normal (linear) constraint + # A normal (affine) constraint else: - state, pm = c.expression.apply(state) - constraints.append(replace(c, expression=pm)) + constraints.append(c) elif isinstance(c, PositiveSemiDefinite): - state, pm = c.expression.apply(state) + state, pm = c.expression.cache().apply(state) nrows, ncols = pm.shape if nrows != ncols: raise ValueError(f"PSD constraint cannot contain non-square matrix of shape ({nrows, ncols})!") # PSD constraint can be passed as-is - constraints.append(replace(c, expression=pm)) + constraints.append(c) elif isinstance(c, ExponentialCone): - state, pm = c.expression.apply(state) - nrows, ncols = pm.shape + state, pm = c.expression.shape.apply(state) - if ncols != 3: + if pm.at(1, 0).constant() != 3: raise ValueError("Conic constraint must be a row vector [x, y, z] ", "or for multiple constraints it must be an n x 3 " f"matrix! Given expression has wrong shape {pm.shape}.") - constraints.append(replace(c, expresssion=pm)) + constraints.append(c) else: raise NotImplementedError(f"Cannot process constraint of type {type(c)} (yet).") - return state, InternalSOSProblem(cost, tuple(constraints), + # Convert Expressions into PolyMatrix objects + # Concatenate constraints so that there is only a big constraint per cone. + pm_constraints: list[Constraint[PolyMatrixMixin]] = [] + + # TODO: can we get rid of for loop inside InternalSOSProblem.to_conic_problem? + for (ctype, group) in groupby(constraints, key=type): + if ctype in (EqualToZero, NonNegative): + state, pm = poly.v_stack((c.expression for c in group)).apply(state) + pm_constraints.append(ctype(pm)) + + elif ctype is PositiveSemiDefinite: + expressions = (c.expression for c in group) + state, pm = poly.block_diag(expressions).apply(state) + pm_constraints.append(ctype(pm)) + + elif ctype is ExponentialCone: + state, pm = poly.v_stack((c.expression for c in group)).apply(state) + pm_constraints.append(ctype(pm)) + + else: + raise NotImplementedError(f"Cannot process constraint of type {ctype} (yet).") + + return state, InternalSOSProblem(cost, tuple(pm_constraints), tuple(variables), polynomial_variables, self.solver, state) @@ -349,8 +369,8 @@ class InternalSOSProblem(Problem): nrows, ncols = constr.shape if constr.degree > 1: - # If this error occurs an it is not the user's fault, there is a bug in - # SOSProblem.apply + # If this error occurs an it is not the user's fault, there is + # a bug in SOSProblem.apply raise ValueError("To convert to conic constraints must be linear or affine " f"but {str(c.expression)} has degree {constr.degree}.") |