summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--sumofsquares/__init__.py105
-rw-r--r--sumofsquares/abc.py86
-rw-r--r--sumofsquares/canon.py11
-rw-r--r--sumofsquares/constraints.py50
-rw-r--r--sumofsquares/problems.py74
-rw-r--r--sumofsquares/utils.py10
6 files changed, 335 insertions, 1 deletions
diff --git a/sumofsquares/__init__.py b/sumofsquares/__init__.py
index da35128..d71d38f 100644
--- a/sumofsquares/__init__.py
+++ b/sumofsquares/__init__.py
@@ -1 +1,104 @@
-from sumofsquares.optvariable import from_names \ No newline at end of file
+"""
+Sum of Squares Package
+======================
+
+This is a package to solve sum-of-squares optimization problems.
+
+Module Overview
+---------------
+
+Class diagram, arrows denote inheritance, whereas diamonds indicate composition.
+::
+
+ ┏━━sumofsquares package━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
+ ┃ ┌─.abc──────────────────────────────────────────────────────────────────────────────────────────┐ ┃
+ ┃ │ ┌────────────┐ ┌──────────────┐ ┌─────────┐ ┌───────┐ ┌──────────────┐ │ ┃
+ ┃ │ │ SolverInfo │◇─┐ │ Solver(Enum) │ │ Problem │ │ Set │ │ Constraint │ │ ┃
+ ┃ │ └────────────┘ │ └──────────────┘ └─────────┘ └───────┘ └──────────────┘ │ ┃
+ ┃ │ ▲ │ ▲ ▲ ▲ │ ┃
+ ┃ └────────┼────────┼─────────────────────────┼─────────────┼───────────────┼─────────────────────┘ ┃
+ ┃ │ │ ┌────────────┘ ┌──┘ ├─────────────┐ ┃
+ ┃ │ │ │ │ │ │ ┃
+ ┃ ┌─.cvxop│t─────┐ │ ┌─.problems┼──────────┐ ┌─.constrai│nts───────────────┼─────────────┼───────┐ ┃
+ ┃ │ │ │ │ │ │ │ │ │ │ │ │ ┃
+ ┃ │ ┌──────────┐ │ │ │ ┌─────────────────┐ │ │ ┌────────────────┐ ┌───────────┐ ┌───────────┐ │ ┃
+ ┃ │ │CVXOptInfo│ │ │ │ │PutinarSOSProblem│ │ │ │ ArchimedeanSet │◇───│NonNegative│ │EqualToZero│ │ ┃
+ ┃ │ └──────────┘ │ │ │ └─────────────────┘ │ │ └────────────────┘ └───────────┘ └───────────┘ │ ┃
+ ┃ │ │ │ │ ┌────────┐ │ │ │ ┃
+ ┃ │ │ └─┼─│ Result │ │ │ │ ┃
+ ┃ │ │ │ └────────┘ │ │ │ ┃
+ ┃ └──────────────┘ └─────────────────────┘ └───────────────────────────────────────────────────┘ ┃
+ ┃ ┌─.variable─────────────────┐ ┃ ┏━━━polymatrix package━━━━━━━━━┓
+ ┃ │ │ ┃ ┃ ┃
+ ┃ │ ┌───────────┐ │ ┃ ┃ ┌──────────┐ ┌──────────┐ ┃
+ ┃ │ │OptVariable│──────────┼──╋──╋─▶│ Variable │ │Expression│ ┃
+ ┃ │ └───────────┘ │ ┃ ┃ └──────────┘ └──────────┘ ┃
+ ┃ │ ▲ │ ┃ ┃ │ ┃
+ ┃ │ │ │ ┃ ┃ ┌─────────┘ ┃
+ ┃ │ │ │ ┃ ┃ ◇ ┃
+ ┃ │ ┌────────────────┐ │ ┃ ┃ ┌─────────────────────┐ ┃
+ ┃ │ │OptVariableMixin│────────┼──╋──╋─▶│ ExpressionBaseMixin │ ┃
+ ┃ │ └────────────────┘ │ ┃ ┃ └─────────────────────┘ ┃
+ ┃ └───────────────────────────┘ ┃ ┃ ┃
+ ┃ ┃ ┃ ┃
+ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛ ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
+
+"""
+from typing import Iterable
+
+import polymatrix as poly
+from polymatrix.expression.expression import Expression
+from polymatrix.expressionstate.abc import ExpressionState
+
+from .abc import Problem, Result, Set, Constraint, Solver
+from .constraints import ArchimedeanSet, NonNegative
+from .problems import PutinarSOSProblem
+from .utils import partition
+from .variable import OptVariable, from_names
+
+
+def make_sos_constraint(expr: Expression, domain: Set | None = None) -> NonNegative:
+ return NonNegative(expr, domain)
+
+
+def make_problem(
+ cost: Expression,
+ constraints: Iterable[Constraint] = (),
+ solver: Solver = Solver.CVXOPT,
+ state: ExpressionState | None = None
+ ) -> Problem:
+ """
+ Create a sum-of-squares optimization problem.
+ """
+ if not state:
+ state = poly.make_state()
+
+ # Convert to polymatrix object to extract variables
+ state, _ = cost.apply(state)
+ for constr in constraints:
+ state, _ = constr.expression.apply(state)
+
+ # Collect decision variables from state object
+ def is_optvariable(v):
+ return isinstance(v, OptVariable)
+
+ poly_variables, opt_variables = partition(is_optvariable, state.indices.keys())
+ return PutinarSOSProblem(
+ cost=cost,
+ constraints=constraints,
+ variables=tuple(opt_variables),
+ polynomial_variables=tuple(poly_variables),
+ solver=solver,
+ state=state)
+
+
+def solve_problem(
+ cost: Expression,
+ constraints: Iterable[Constraint] = (),
+ solver: Solver = Solver.CVXOPT
+ ) -> tuple[Problem, Result]:
+ """
+ Solve a sum-of-squares optimization problem.
+ """
+ prob = make_problem(cost, constraints, solver)
+ return prob, prob.solve()
diff --git a/sumofsquares/abc.py b/sumofsquares/abc.py
new file mode 100644
index 0000000..482ba7f
--- /dev/null
+++ b/sumofsquares/abc.py
@@ -0,0 +1,86 @@
+""" Abstract base classes for Sum of Squares package """
+from __future__ import annotations
+from typing import Sequence, Any
+
+from abc import ABC, abstractmethod
+from enum import Enum, auto
+
+from polymatrix.expression.expression import Expression
+from polymatrix.expressionstate.abc import ExpressionState
+from polymatrix.variable.abc import Variable
+
+from sumofsquares.variable import OptVariable
+
+
+class Solver(Enum):
+ """ Enumeration for the supported solvers. """
+ CVXOPT = auto()
+ # MOSEK = auto()
+
+
+class SolverInfo(ABC):
+ """ Type that information returned by a specific solver. """
+
+
+class Result(ABC):
+ """ Result of an optimization problem. """
+ @abstractmethod
+ def value_of(self, var: OptVariable) -> float:
+ """ Retrieve value of variable. """
+
+
+class Set(ABC):
+ """ A set. In this context always a subset of :math:`\mathbf{R}^q` """
+
+
+class Constraint(ABC):
+ r"""
+ Optimization constraint.
+ """
+ @property
+ @abstractmethod
+ def expression(self) -> Expression:
+ """ Expression under the constraint. """
+
+
+class Problem(ABC):
+ """ Optimization Problem. """
+
+ # --- Properties ---
+
+ @property
+ @abstractmethod
+ def cost(self) -> Expression:
+ """ Expression of cost function. """
+
+ @property
+ @abstractmethod
+ def constraints(self) -> Sequence[Constraint]:
+ """ Optimization constraints. """
+
+ @property
+ @abstractmethod
+ def variables(self) -> Sequence[OptVariable]:
+ """ Optimization variables of the problem. """
+
+ @property
+ @abstractmethod
+ def polynomial_variables(self) -> Sequence[Variable]:
+ """ Polynomial variables, or varaibles that are not optimization varaibles. """
+
+ @property
+ @abstractmethod
+ def solver(self) -> Solver:
+ """ Which solver was / will be used to solve the problem. """
+
+
+ @property
+ @abstractmethod
+ def state(self) -> ExpressionState:
+ """ Expression state used to evaluate constraints and costs. """
+
+ # --- Methods ---
+
+ @abstractmethod
+ def solve(self) -> Result:
+ """ Solve the optimization problem. """
diff --git a/sumofsquares/canon.py b/sumofsquares/canon.py
new file mode 100644
index 0000000..4918758
--- /dev/null
+++ b/sumofsquares/canon.py
@@ -0,0 +1,11 @@
+""" Canonicalization of Problems """
+from .abc import Problem
+
+
+def log_canon(prob: Problem) -> Problem:
+ raise NotImplementedError
+
+
+def log_det_canon(prob: Problem) -> Problem:
+ raise NotImplementedError
+
diff --git a/sumofsquares/constraints.py b/sumofsquares/constraints.py
new file mode 100644
index 0000000..3634e61
--- /dev/null
+++ b/sumofsquares/constraints.py
@@ -0,0 +1,50 @@
+from dataclassabc import dataclassabc
+
+from polymatrix.expression.expression import Expression
+
+from .abc import Set, Constraint
+
+
+class ArchimedeanSet(Set, tuple[Expression]):
+ r"""
+ A set that is described by the intersection of the positive loci of a
+ finite number of polynomials (under some conditions). Roughly speaking this
+ is a set of the form
+ ..math::
+
+ \mathbf{K} = \{
+ x : g_i(x) \geq 0,
+ g_i \in \mathbf{R}(x),
+ x \in \mathbf{R}^q,
+ i = 1, \ldots, N
+ \}
+ \subseteq \mathbf{R}^q.
+
+ This tuple stores the :math:`g_i(x)`.
+
+ **Important note:** this package does not check whether the set is actually
+ Archimedean! It is assumed that the given :math:`g_i` make
+ :math:`\mathbf{K}` Archimedean.
+ """
+
+
+@dataclassabc(frozen=True)
+class EqualToZero(Constraint):
+ """ Constrain an expression to be equal to zero. """
+ expression: Expression
+
+
+@dataclassabc(frozen=True)
+class NonNegative(Constraint):
+ """
+ Constrain an expression to be non-negative in a certain domain. If the
+ domain in set to `None` then it is interpreted as being non-negative
+ everywhere.
+
+ **Note:** In this package, non-negativitiy constraint will always
+ eventually be replaced by the sufficient condition that the expression can
+ be written as a sum-of-squares, hence this constraint can also be
+ understood as `expression` being SOS.
+ """
+ expression: Expression
+ domain: ArchimedeanSet | None = None
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
new file mode 100644
index 0000000..035e756
--- /dev/null
+++ b/sumofsquares/problems.py
@@ -0,0 +1,74 @@
+"""
+Specific optimization problems that are related to Sum of Squares.
+"""
+from __future__ import annotations
+
+from itertools import filterfalse
+from dataclasses import replace
+from dataclassabc import dataclassabc
+from typing import Any, Sequence
+from typing_extensions import override
+
+import polymatrix as poly
+from polymatrix.expression.expression import Expression
+from polymatrix.expressionstate.abc import ExpressionState
+from polymatrix.variable.abc import Variable
+
+from .abc import Problem, Constraint, Solver, Result
+from .constraints import NonNegative
+from .cvxopt import solve_sos_cone as cvxopt_solve_sos_cone
+from .variable import OptVariable
+
+
+@dataclassabc(frozen=True)
+class SOSResult(Result):
+ values: dict[OptVariable, float]
+ solver_info: Any
+
+ @override
+ def value_of(self, var: OptVariable) -> float:
+ return self.values[var]
+
+
+@dataclassabc(frozen=True)
+class PutinarSOSProblem(Problem):
+ r"""
+ SOS problem with quadratic cost, linear constraints and optinally with
+ positivity constraints over an archimedean set :math:`\mathbf{K}`. To
+ constrain the positivity over :math:`\mathbf{K}` this problem uses
+ Putinar's positivstellensatz.
+ """
+ cost: Expression
+ constraints: Sequence[Constraint]
+ variables: Sequence[OptVariable]
+ polynomial_variables: Sequence[Variable]
+ solver: Solver
+ state: ExpressionState
+
+ def after_positivstellensatz(self) -> Problem:
+ """
+ Apply Putinar's positivstellensatz to convert the SOS constraints
+ into coefficient matching constraints
+ """
+ def need_positivstellensatz(c):
+ return isinstance(c, NonNegative) and c.domain
+
+ # Add langrange-multiplier-like polynomials to SOS constraints, while
+ # leaving the rest untouched.
+ variables = list(self.variables)
+ constraints = list(filterfalse(need_positivstellensatz, self.constraints))
+ for c in filter(need_positivstellensatz, self.constraints):
+ # FIXME: implement
+ raise NotImplementedError
+
+ return replace(self, constraints=constraints, variables=variables)
+
+
+ @override
+ def solve(self) -> Result:
+ if not self.solver == Solver.CVXOPT:
+ raise NotImplementedError(f"Cannot solve problem {self} using solver {str(self.solver)}.")
+
+ prob = self.after_positivstellensatz()
+ result, info = cvxopt_solve_sos_cone(prob)
+ return SOSResult(result, info)
diff --git a/sumofsquares/utils.py b/sumofsquares/utils.py
new file mode 100644
index 0000000..c18bd08
--- /dev/null
+++ b/sumofsquares/utils.py
@@ -0,0 +1,10 @@
+from itertools import tee, filterfalse
+
+def partition(predicate, iterable):
+ """Partition entries into false entries and true entries.
+
+ If *predicate* is slow, consider wrapping it with functools.lru_cache().
+ """
+ # partition(is_odd, range(10)) → 0 2 4 6 8 and 1 3 5 7 9
+ t1, t2 = tee(iterable)
+ return filterfalse(predicate, t1), filter(predicate, t2)