summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--sumofsquares/constraints.py35
-rw-r--r--sumofsquares/problems.py233
-rw-r--r--sumofsquares/solver/cvxopt.py98
-rw-r--r--sumofsquares/solver/mosek.py4
-rw-r--r--sumofsquares/solver/scs.py13
5 files changed, 244 insertions, 139 deletions
diff --git a/sumofsquares/constraints.py b/sumofsquares/constraints.py
index b808bbb..844cc37 100644
--- a/sumofsquares/constraints.py
+++ b/sumofsquares/constraints.py
@@ -64,10 +64,10 @@ class NonNegative(Constraint[E]):
the domain in set to `None` then it is interpreted as being non-negative
everywhere.
- **Note:** In this package, non-negativitiy constraint will always
- eventually be replaced by the sufficient condition that the expression can
- be written as a sum-of-squares, hence this constraint can also be
- understood as `expression` being SOS.
+ **Note:** In this package, non-negativitiy of non-affine constraint will
+ always eventually be replaced by the sufficient condition that the
+ expression can be written as a sum-of-squares, hence this constraint can
+ also be understood as `expression` being SOS.
"""
# This was part of the docstring but is not implemented yet
@@ -105,3 +105,30 @@ class ExponentialCone(Constraint[E]):
a single point that must be inside of the exponential cone.
"""
expression: E
+
+
+# TODO: Create missing classes below and add support in
+# - SOSProblem.apply
+# - InternalSOSProblem.to_conic_problem
+# - solver.SOLVERNAME.solve_cone (for each solver)
+
+
+# @dataclassabc(frozen=True)
+# class SecondOrderCone(Constraint[E]):
+# """ Constrain an expression to be in the second order cone. """
+# expression: E
+# t: E # FIXME: review this
+
+
+# @dataclassabc(frozen=True)
+# class DualExponentialCone(Constraint[E]):
+# ...
+
+# @dataclassabc(frozen=True)
+# class PowerCone(Constraint[E]):
+# ...
+
+
+# @dataclassabc(frozen=True)
+# class DualPowerCone(Constraint[E]):
+# ...
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
index e7b9490..02d5a1e 100644
--- a/sumofsquares/problems.py
+++ b/sumofsquares/problems.py
@@ -14,7 +14,7 @@ from numpy.typing import NDArray
from typing import Any, Sequence
from typing_extensions import override
-from polymatrix.expression.expression import Expression, VariableExpression, init_expression
+from polymatrix.expression.expression import Expression, VariableExpression
from polymatrix.expressionstate import ExpressionState
from polymatrix.polymatrix.mixins import PolyMatrixMixin
from polymatrix.polymatrix.index import MonomialIndex
@@ -22,7 +22,8 @@ from polymatrix.variable import Variable
from .abc import Problem, Constraint, Solver, Result
from .constraints import NonNegative, EqualToZero, PositiveSemiDefinite, ExponentialCone
-from .solver.cvxopt import solve_sos_cone as cvxopt_solve_sos_cone
+from .solver.cvxopt import solve_cone as cvxopt_solve_cone
+from .solver.scs import solve_cone as scs_solve_cone
from .utils import partition
from .variable import OptVariable
@@ -43,47 +44,67 @@ class ConicProblem(Problem):
minimize .5 * x.T @ P @ x + q.T @ x
- subject to G @ x <= h
- A @ x = b
+ subject to CONSTRAINTS
+ See docstring of :py:attr:`ConicProblem.constraints` for supported types of
+ constraints.
"""
- P: NDArray
- q: NDArray
- A: NDArray
- b: NDArray
- G: NDArray
- h: NDArray
+ P: NDArray | None
+ """ Quadratic term of the cost function """
+
+ q: NDArray | None
+ """ Linear term of the cost function """
- dims: dict
is_qp: bool
+ dims: dict
+
+ # TODO: Maybe do a dict[type, list[...]] instead?
+ constraints: dict[str, list[tuple[tuple[NDArray, ...], NDArray]]]
+ """
+ Conic constraints are saved in a dictionary with the following form.
+ For the key we will use the following names to refer to various constraint
+ types of constraints
+ ::
+
+ z zero cone (s = 0)
+ l linear cone (s >= 0)
+ b box cone (tl <= s <= tu)
+ q second order cone (|s|_2 <= t)
+ s positive semidefinite cone (s is PSD)
+ ep exponential cone ((x,y,z) in ExpCone)
+ ep* dual exponential cone ((u,v,w) in DualExpCone)
+ p power cone
+ p* dual power cone
+
+ Then the values are the coefficients of a LMI saved in a tuple `(linear
+ terms, constant term)`. The linear terms is again a tuple, with length
+ equal the number of variables. The coefficients are left as matrices since
+ each solver may expect then to be vectorized in a different way.
+
+ See also solver.SOLVERNAME.solve_cone functions.
+ """
+
solver: Solver
variables: Sequence[OptVariable]
@property
@override
- def cost(self) -> tuple[NDArray, NDArray]:
+ def cost(self) -> tuple[NDArray | None, NDArray | None]:
return self.P, self.q
- @property
- @override
- def constraints(self) -> dict[str, tuple[NDArray, NDArray]]:
- return {
- "eq": (self.A, self.b),
- "ineq": (self.G, self.h)
- }
-
@override
def solve(self, verbose: bool = False) -> ConicResult:
match self.solver:
case Solver.CVXOPT:
- result, info = cvxopt_solve_sos_cone(self, verbose)
+ result, info = cvxopt_solve_cone(self, verbose)
+ case Solver.SCS:
+ result, info = scs_solve_cone(self, verbose)
case _:
- raise NotImplementedError
+ raise NotImplementedError(f"Solver {self.solver} is not supported (yet).")
return ConicResult(values=result, solver_info=info)
-
@dataclassabc(frozen=True)
class ConicResult(Result):
values: dict[OptVariable, float]
@@ -100,8 +121,8 @@ class ConicResult(Result):
var = var.underlying
if var not in self.values:
- # TODO: error message
- raise KeyError
+ raise KeyError(f"There is no result for the variable {var}, "
+ "was the problem successfully solved?")
return self.values[var]
@@ -129,8 +150,8 @@ class SOSProblem(Problem):
f"minimize {self.cost}\n " \
f"subject to ({n} constraint{'s' if n > 1 else ''})\n"
- for c in self.constraints:
- s += f"\t* {str(c)}\n"
+ for i, c in enumerate(self.constraints):
+ s += f"\tnr. {i}: {str(c)}\n"
return s
@@ -165,14 +186,34 @@ class SOSProblem(Problem):
polynomial_variables = tuple(polynomial_variables) # because it is a generator
x = poly.v_stack(polynomial_variables)
- for c in self.constraints:
- # Scalar polynomial equality and non-negativity contraints need to
- # be converted to (linear) coefficient matching constraints
- if isinstance(c, NonNegative | EqualToZero):
- state, pm = c.expression.quadratic_in(x).apply(state)
+ for i, c in enumerate(self.constraints):
+ if isinstance(c, EqualToZero):
+ state, pm = c.expression.apply(state)
+ constraints.append(replace(c, expression=pm))
+
+ elif isinstance(c, NonNegative):
+ if c.domain:
+ raise ValueError(f"Cannot convert non-negativity constraint nr. {i} "
+ "to conic constraint. Domain restricted non-negativity "
+ "must be preprocessed by using a Positivstellensatz!")
+ state, deg = c.expression.degree().apply(state)
+
+ # Polynomial non-negativity contraints is converted to PSD
+ # constraint of SOS quadratic form
+ if deg.scalar().constant() > 1:
+ state, pm = c.expression.quadratic_in(x).symmetric().apply(state)
+ constraints.append(PositiveSemiDefinite(pm))
+
+ # A normal (linear) constraint
+ else:
+ state, pm = c.expression.apply(state)
+ constraints.append(replace(c, expression=pm))
+
+ # PSD constraint can be passed as-is
elif isinstance(c, PositiveSemiDefinite):
state, pm = c.expression.apply(state)
+ constraints.append(replace(c, expression=pm))
elif isinstance(c, ExponentialCone):
raise NotImplementedError
@@ -180,8 +221,6 @@ class SOSProblem(Problem):
else:
raise NotImplementedError
- constraints.append(replace(c, expression=pm))
-
return state, InternalSOSProblem(cost, tuple(constraints),
tuple(variables), polynomial_variables,
self.solver, state)
@@ -204,6 +243,7 @@ class InternalSOSProblem(Problem):
variables: Sequence[OptVariable]
polynomial_variables: Sequence[Variable]
solver: Solver
+
# TODO: remove state field from this class, it is redundant
state: ExpressionState
@@ -215,19 +255,27 @@ class InternalSOSProblem(Problem):
is_qp = (cost.degree == 2)
- A_rows, b_rows = [], []
- G_rows, h_rows= [], []
- l_dims, q_dims, s_dims = [], [], []
+ # Sizes
+ dims: dict[str, list[int]] = {
+ "z": [], "l": [], "b": [], "q": [], "s": [],
+ "ep": [], "ep*": [], "p": [], "p*": [],
+ }
+
+ # See docstring of ConicProblem.constraints
+ constraints: dict[str, list[tuple[tuple[NDArray, ...], NDArray]]] = {
+ "z": [], "l": [], "b": [], "q": [], "s": [],
+ "ep": [], "ep*": [], "p": [], "p*": [],
+ }
- # indices of variables in the optimization problem
+ # indices of variables in the optimization problem, sorted
variable_indices = sum(sorted(tuple(self.state.get_indices_as_variable_index(v))
for v in self.variables), ())
# cost linear term
cost_coeffs = dict(cost.affine_coefficients_by_degrees(variable_indices))
- q = cost_coeffs.get(1)
- if q is None and is_qp:
- q = np.zeros((len(variable_indices), 1))
+ q = cost_coeffs.get(1)
+ if q is not None:
+ q = q.reshape((-1, 1))
# cost quadratic term
if is_qp:
@@ -238,98 +286,55 @@ class InternalSOSProblem(Problem):
P[np.triu_indices(n)] = cost_coeffs[2]
# Make symmetric. There is no 0.5 factor because there it is already
- # there in the canonical form of CVXOPT
+ # there in the canonical form, see docstring of ConicProblem
P = (P + P.T)
else:
P = None
for c in self.constraints:
- if isinstance(c, PositiveSemiDefinite):
- constr = poly.to_affine(c.expression)
-
- nrows, ncols = constr.shape
- if nrows != ncols:
- raise ValueError(f"PSD constraint cannot contain non-square matrix of shape ({nrows, ncols})!")
+ constr = poly.to_affine(c.expression)
+ nrows, ncols = constr.shape
- s_dims.append(nrows)
+ if constr.degree > 1:
+ raise ValueError("To convert to conic constraints must be linear or affine "
+ f"but {str(c.expression)} has degree {constr.degree}.")
- # constant term
- c_coeff = constr.affine_coefficient(MonomialIndex.constant())
- c_stacked = c_coeff.T.reshape((nrows * ncols,))
+ # Get constant and linear terms
+ constant = constr.affine_coefficient(MonomialIndex.constant())
+ linear = tuple(constr.affine_coefficient(v) for v in variable_indices)
+
+ if isinstance(c, EqualToZero):
+ dims["z"].append(nrows)
+ constraints["z"].append((linear, constant))
- # linear terms
- l_stacked_rows = []
- for v in variable_indices:
- v_coeff = constr.affine_coefficient(v)
- v_stacked = v_coeff.T.reshape((nrows * ncols,))
- l_stacked_rows.append(v_stacked)
+ elif isinstance(c, NonNegative):
+ dims["l"].append(nrows)
+ constraints["l"].append((linear, constant))
- l_stacked = np.vstack(l_stacked_rows)
+ elif isinstance(c, PositiveSemiDefinite):
+ if nrows != ncols:
+ raise ValueError(f"PSD constraint cannot contain non-square matrix of shape ({nrows, ncols})!")
- h_rows.append(c_stacked)
- G_rows.append(-1 * l_stacked)
+ dims["s"].append(nrows)
+ constraints["s"].append((linear, constant))
elif isinstance(c, ExponentialCone):
- # TODO: implement
- raise NotImplementedError
-
- elif isinstance(c, EqualToZero | NonNegative):
- constr = poly.to_affine(c.expression)
- if constr.degree > 1:
- raise ValueError("To convert to conic constraints must be linear or affine "
- f"but {str(c.expression)} has degree {constr.degree}.")
-
- # For each constraint we add PSD matrix
- nrows, ncols = constr.shape
- s_dims.append(nrows)
-
- # Constant term
- c_coeff = constr.affine_coefficient(MonomialIndex.constant())
- c_stacked = c_coeff.T.reshape((nrows * ncols,))
-
- # Linear term
- l_stacked_rows = []
- for v in variable_indices:
- # Get the affine coefficient associated to this variable
- v_coeff = constr.affine_coefficient(v)
-
- # stack the columns of coeff matrix into a fat row vector (column major order).
- v_stacked = v_coeff.T.reshape((nrows * ncols,))
- l_stacked_rows.append(v_stacked)
-
- l_stacked = np.vstack(l_stacked_rows)
-
- if isinstance(c, EqualToZero):
- A_rows.append(l_stacked)
- # Factor of -1 because it is on the right hand side
- b_rows.append(-1 * c_stacked)
-
- elif isinstance(c, NonNegative):
- if c.domain:
- raise ValueError("Cannot convert non-negativity constraint to conic constraint. "
- "Domain restricted non-negativity must be "
- "preprocessed by using a Positivstellensatz!")
-
- # Factor of -1 because it is on the right hand side
- G_rows.append(-1 * l_stacked)
- h_rows.append(c_stacked)
+ # Interpret row-wise
+ dims["ep"].extend(1 for _ in range(nrows))
+ for i in range(nrows):
+ constraints["ep"].append((
+ tuple(m[i, :] for m in linear),
+ constant[i, :]))
else:
raise NotImplementedError(f"Cannot convert constraint of type {type(c)} "
- "into a conic constriant.")
-
- G = np.hstack(G_rows).T if G_rows else None
- h = np.hstack(h_rows) if h_rows else None
- A = np.hstack(A_rows).T if A_rows else None
- b = np.hstack(b_rows) if b_rows else None
-
- dims = {'l': l_dims, 'q': q_dims, 's': s_dims}
+ "into a conic constriant (yet).")
- if all((G is None, h is None, A is None, b is None)):
+ if all(len(cl) == 0 for cl in constraints.values()):
raise ValueError("Optimization problem is unconstrained!")
- return ConicProblem(P=P, q=q, A=A, b=b, G=G, h=h,
+ return ConicProblem(P=P, q=q, constraints=constraints,
dims=dims, is_qp=is_qp,
solver=self.solver,
variables=self.variables)
diff --git a/sumofsquares/solver/cvxopt.py b/sumofsquares/solver/cvxopt.py
index 87e0b0f..e41633f 100644
--- a/sumofsquares/solver/cvxopt.py
+++ b/sumofsquares/solver/cvxopt.py
@@ -7,11 +7,13 @@ import cvxopt
import numpy as np
import math
+from numpy.typing import NDArray
from collections import UserDict
from typing import TYPE_CHECKING
+from pprint import pprint
from ..abc import SolverInfo
-from ..error import SolverError
+from ..error import SolverError, NotSupportedBySolver
from ..variable import OptVariable
if TYPE_CHECKING:
@@ -29,8 +31,18 @@ class CVXOPTInfo(SolverInfo, UserDict):
return self[key]
-def solve_sos_cone(prob: ConicProblem, verbose: bool = False,
- *args, **kwargs) -> tuple[dict[OptVariable, float], CVXOPTInfo]:
+def vectorize_matrix(m: NDArray) -> NDArray:
+ r"""
+ Vectorize a symmetric matrix for CVXOPT by stacking its columns. So,
+ a :math:`n\times n` matrix becomes an :math:`n^2 \times 1` column vector.
+ """
+ # if m.shape[0] != m.shape[1]:
+ # raise ValueError("Matrix must be symmetric, and hence square!")
+ return np.hstack(m.T.tolist()).reshape((-1, 1))
+
+
+def solve_cone(prob: ConicProblem, verbose: bool = False,
+ *args, **kwargs) -> tuple[dict[OptVariable, NDArray | float], CVXOPTInfo]:
r"""
Any `*args` and `**kwargs` other than `prob` are passed to the CVXOPT
solver.
@@ -43,32 +55,84 @@ def solve_sos_cone(prob: ConicProblem, verbose: bool = False,
# A @ x = b
# s >= 0
#
- # This matches the structure of ConicProblem, so the values can be used
- # directly.
- try:
- # Some are transposed because CVXOPT uses column major arrays
- q = cvxopt.matrix(prob.q.T)
- A = cvxopt.matrix(prob.A) if prob.A is not None else None
- b = cvxopt.matrix(prob.b.T) if prob.b is not None else None
- G = cvxopt.matrix(prob.G) if prob.G is not None else None
- h = cvxopt.matrix(prob.h.T) if prob.h is not None else None
+ # Importantly, CVXOPT can only solve problems in the l, q and s cones.
- if prob.is_qp:
- P = cvxopt.matrix(prob.P)
+ if prob.constraints["b"]:
+ raise NotImplementedError("Automatic conversion of box constraints "
+ "into linear constraints is not supported yet.")
+
+ if prob.constraints["ep"] or prob.constraints["ep*"]:
+ raise NotSupportedBySolver("CVXOPT cannot solve problems with the exponential cone.")
+
+ if prob.constraints["p"] or prob.constraints["p*"]:
+ raise NotSupportedBySolver("CVXOPT cannot solve problems with the power cone.")
+
+ # Cost function
+ q = cvxopt.matrix(prob.q) if prob.q is not None else None
+ P = cvxopt.matrix(prob.P) if prob.P is not None else None
+
+ # Constraint matrices
+ A, b, G, h = None, None, None, None
+
+ # Equality constraints
+ A_rows, b_rows = [], []
+ for (linear, constant) in prob.constraints["z"]:
+ b_rows.append(constant)
+ A_rows.append(np.hstack(tuple(vectorize_matrix(m) for m in linear)).T)
+
+ if A_rows:
+ # b is multiplied by -1 because it is on the RHS
+ b = cvxopt.matrix(np.vstack(b_rows)) * -1
+ A = cvxopt.matrix(np.vstack(A_rows))
+ # Inequality, second order and PSD constraints
+ G_rows, h_rows = [], []
+
+ for (linear, constant) in prob.constraints["l"]:
+ h_rows.append(constant)
+ G_rows.append(np.hstack(tuple(m for m in linear)).T)
+
+ if prob.constraints["q"]:
+ raise NotImplementedError("SOC constraints are not implemented yet.")
+
+ for (linear, constant) in prob.constraints["s"]:
+ h_rows.append(vectorize_matrix(constant))
+ G_rows.append(np.hstack(tuple(vectorize_matrix(m) for m in linear)))
+
+ # pprint(f"{G_rows = }")
+ # pprint(f"{h_rows = }")
+
+ if G_rows:
+ # h is multiplied by -1 because it is on the RHS
+ h = cvxopt.matrix(np.vstack(h_rows).reshape((-1, 1))) * -1
+ G = cvxopt.matrix(np.vstack(G_rows))
+
+
+ # Solve the problem
+ # pprint({"A": A, "b": b, "G": G, "h": h})
+
+ try:
+ if prob.is_qp:
+ assert P is not None, "Solving LP with QP solver! Something has gone wrong"
info = cvxopt.solvers.coneqp(P=P, q=q, G=G, h=h, A=A, b=b,
dims=prob.dims, *args, **kwargs)
else:
+ assert q is not None, "LP has no objective! Something is very wrong"
info = cvxopt.solvers.conelp(c=q, G=G, h=h, A=A, b=b,
*args, **kwargs)
+ except AssertionError as e:
+ raise e
+
except Exception as e:
raise SolverError("CVXOpt can't solve this problem, "
- "see previous exception why.") from e
+ "see previous exception for details on why.") from e
+
- results = {}
+ if info['x'] is None:
+ return {}, CVXOPTInfo(info)
- i = 0
+ results, i = {}, 0
for variable in prob.variables:
num_indices = math.prod(variable.shape)
values = np.array(info['x'][i:i+num_indices]).reshape(variable.shape)
diff --git a/sumofsquares/solver/mosek.py b/sumofsquares/solver/mosek.py
index e0b73fc..763555b 100644
--- a/sumofsquares/solver/mosek.py
+++ b/sumofsquares/solver/mosek.py
@@ -39,8 +39,8 @@ def setup(license_file: Path | str | None = None):
MOSEK_ENV = mosek.Env(licensefile=str(license_file))
-def solve_sos_cone(prob: Problem, verbose: bool = False,
- *args, **kwargs) -> tuple[dict[OptVariable, float], MOSEKInfo]:
+def solve_cone(prob: Problem, verbose: bool = False,
+ *args, **kwargs) -> tuple[dict[OptVariable, float], MOSEKInfo]:
r"""
Solve a conic problem in the cone of SOS polynomials
:math:`\mathbf{\Sigma}_d(x)` using MOSEK.
diff --git a/sumofsquares/solver/scs.py b/sumofsquares/solver/scs.py
index 3106df2..4f17a24 100644
--- a/sumofsquares/solver/scs.py
+++ b/sumofsquares/solver/scs.py
@@ -6,6 +6,7 @@ from __future__ import annotations
import scs
from collections import UserDict
+from numpy.typing import NDArray
from typing import TYPE_CHECKING
from ..abc import Problem, SolverInfo
@@ -25,8 +26,16 @@ class SCSInfo(SolverInfo, UserDict):
return self[key]
-def solve_sos_cone(prob: ConicProblem, verbose: bool = False,
- *args, **kwargs) -> tuple[dict[OptVariable, float], SCSInfo]:
+def vectorize_matrix(m: NDArray) -> NDArray:
+ r"""
+ Vectorize a symmetric matrix for SCS by storing only a half of the entries
+ and multiplying the off-diaognal elements by :math:`\sqrt{2}`.
+ """
+ raise NotImplementedError
+
+
+def solve_cone(prob: ConicProblem, verbose: bool = False,
+ *args, **kwargs) -> tuple[dict[OptVariable, float], SCSInfo]:
r"""
Solve a conic problem in the cone of SOS polynomials
:math:`\mathbf{\Sigma}_d(x)` using SCS.