diff options
Diffstat (limited to '')
-rw-r--r-- | sumofsquares/abc.py | 4 | ||||
-rw-r--r-- | sumofsquares/problems.py | 63 | ||||
-rw-r--r-- | sumofsquares/solver/cvxopt.py | 10 | ||||
-rw-r--r-- | sumofsquares/solver/mosek.py | 4 | ||||
-rw-r--r-- | sumofsquares/solver/scs.py | 10 | ||||
-rw-r--r-- | sumofsquares/variable.py | 40 |
6 files changed, 69 insertions, 62 deletions
diff --git a/sumofsquares/abc.py b/sumofsquares/abc.py index 20f4bd6..2f852df 100644 --- a/sumofsquares/abc.py +++ b/sumofsquares/abc.py @@ -5,7 +5,7 @@ from abc import ABC, abstractmethod from enum import Enum, auto from typing import Any, Generic, TypeVar -from sumofsquares.variable import OptVariable +from sumofsquares.variable import OptSymbol # ┏━┓┏━┓╻ ╻ ╻┏━╸┏━┓ @@ -52,7 +52,7 @@ class Constraint(ABC, Generic[E]): class Result(ABC): """ Result of an optimization problem. """ @abstractmethod - def value_of(self, var: OptVariable) -> float: + def value_of(self, var: OptSymbol) -> float: """ Retrieve value of variable. """ diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py index f4f3d7b..7bcd629 100644 --- a/sumofsquares/problems.py +++ b/sumofsquares/problems.py @@ -17,17 +17,18 @@ from typing_extensions import override from polymatrix.expression.expression import Expression, VariableExpression from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin +from polymatrix.expression.init import init_variable_expr from polymatrix.expressionstate import ExpressionState from polymatrix.polymatrix.mixins import PolyMatrixMixin from polymatrix.polymatrix.index import MonomialIndex, VariableIndex -from polymatrix.variable import Variable +from polymatrix.symbol import Symbol from .abc import Problem, Constraint, Solver, Result from .constraints import NonNegative, EqualToZero, PositiveSemiDefinite, ExponentialCone from .solver.cvxopt import solve_cone as cvxopt_solve_cone from .solver.scs import solve_cone as scs_solve_cone from .utils import partition -from .variable import OptVariable +from .variable import OptVariableExprMixin, OptSymbol # ┏━╸┏━┓┏┓╻╻┏━╸ ┏━┓┏━┓┏━┓┏┓ ╻ ┏━╸┏┳┓ @@ -89,7 +90,7 @@ class ConicProblem(Problem): """ solver: Solver - variables: Sequence[OptVariable] + variables: dict[OptSymbol, tuple[int, int]] @property @override @@ -112,32 +113,24 @@ class ConicProblem(Problem): @dataclassabc(frozen=True) class ConicResult(Result): """ Result of a Conic Problem """ - values: dict[OptVariable, float] + values: dict[OptSymbol, float] solver_info: Any @override - def value_of(self, var: OptVariable | VariableExpression) -> float: + def value_of(self, var: OptSymbol| VariableExpression) -> float: if isinstance(var, VariableExpression): - if not isinstance(var.underlying, OptVariable): + if not isinstance(var.underlying, OptVariableExprMixin): # TODO: error message raise ValueError # Unwrap the expression - var = var.underlying + symbol = var.underlying.symbol - if var not in self.values: - # FIXME: this is a temporary fix here. - if isinstance(var.shape, ExpressionBaseMixin): - state = poly.make_state() - state, shapepm = var.shape.apply(state) - shape = (shapepm.at(0,0).constant(), shapepm.at(1,0).constant()) - var = replace(var, shape=shape) + if var not in self.values: + raise KeyError(f"There is no result for the variable {var}. " + f"Was the problem successfully solved?") - if var not in self.values: - raise KeyError(f"There is no result for the variable {var}. " - f"Was the problem successfully solved?") - - return self.values[var] + return self.values[symbol] # ┏━┓╻ ╻┏┳┓ ┏━┓┏━╸ ┏━┓┏━┓╻ ╻┏━┓┏━┓┏━╸┏━┓ ┏━┓┏━┓┏━┓┏━╸┏━┓┏━┓┏┳┓ @@ -201,17 +194,19 @@ class SOSProblem(Problem): state, pm = c.expression.apply(state) variable_indices.update(pm.variables()) - variables = set(state.get_variable_from_variable_index(v) + variables = set(state.get_symbol_from_variable_index(v) for v in variable_indices) - # Collect variables - def is_optvariable(v): - return isinstance(v, OptVariable) + # Collect optimization variables + def is_opt(v): + return isinstance(v, OptSymbol) - polynomial_variables, variables = partition(is_optvariable, variables) + polynomial_variables, variables = partition(is_opt, variables) polynomial_variables = tuple(polynomial_variables) # because it is a generator - x = poly.v_stack((1,) + polynomial_variables) + x = poly.v_stack((1,) + tuple( + init_variable_expr(v, state.get_shape(v)) + for v in polynomial_variables)) for i, c in enumerate(self.constraints): if isinstance(c, EqualToZero): state, deg = c.expression.degree().apply(state) @@ -309,14 +304,14 @@ class InternalSOSProblem(Problem): """ cost: PolyMatrixMixin constraints: Sequence[Constraint[PolyMatrixMixin]] - variables: Sequence[OptVariable] - polynomial_variables: Sequence[Variable] + variables: Sequence[OptSymbol] + polynomial_variables: Sequence[Symbol] solver: Solver # TODO: remove state field from this class, it is redundant state: ExpressionState - def to_conic_problem(self) -> ConicProblem: + def to_conic_problem(self, verbose: bool = False) -> ConicProblem: """ Conver the SOS problem into a Conic program. """ @@ -410,12 +405,20 @@ class InternalSOSProblem(Problem): if all(len(cl) == 0 for cl in constraints.values()): raise ValueError("Optimization problem is unconstrained!") + if verbose: + # print("Conic problem has shapes: \n" + # f"\t {q.shape = }\n") + pass + + return ConicProblem(P=P, q=q, constraints=constraints, dims=dims, is_qp=is_qp, solver=self.solver, - variables=self.variables) + variables={v : self.state.get_shape(v) + for v in self.variables + }) @override def solve(self, verbose: bool = False) -> Result: - return self.to_conic_problem().solve(verbose) + return self.to_conic_problem(verbose).solve(verbose) diff --git a/sumofsquares/solver/cvxopt.py b/sumofsquares/solver/cvxopt.py index 1c37fbe..0692787 100644 --- a/sumofsquares/solver/cvxopt.py +++ b/sumofsquares/solver/cvxopt.py @@ -14,7 +14,7 @@ from pprint import pprint from ..abc import SolverInfo from ..error import SolverError, NotSupportedBySolver -from ..variable import OptVariable +from ..variable import OptSymbol if TYPE_CHECKING: from ..problems import ConicProblem @@ -42,7 +42,7 @@ def vectorize_matrix(m: NDArray) -> NDArray: def solve_cone(prob: ConicProblem, verbose: bool = False, - *args, **kwargs) -> tuple[dict[OptVariable, NDArray | float], CVXOPTInfo]: + *args, **kwargs) -> tuple[dict[OptSymbol, NDArray | float], CVXOPTInfo]: r""" Any `*args` and `**kwargs` other than `prob` and `vebose` are passed to the CVXOPT solver. @@ -150,9 +150,9 @@ def solve_cone(prob: ConicProblem, verbose: bool = False, return {}, CVXOPTInfo(info) results, i = {}, 0 - for variable in prob.variables: - num_indices = math.prod(variable.shape) - values = np.array(info["x"][i:i+num_indices]).reshape(variable.shape) + for variable, shape in prob.variables.items(): + num_indices = math.prod(shape) + values = np.array(info["x"][i:i+num_indices]).reshape(shape) if values.shape == (1, 1): values = values[0, 0] diff --git a/sumofsquares/solver/mosek.py b/sumofsquares/solver/mosek.py index de4f92f..6a8ce25 100644 --- a/sumofsquares/solver/mosek.py +++ b/sumofsquares/solver/mosek.py @@ -9,7 +9,7 @@ import mosek from pathlib import Path from ..abc import Problem, SolverInfo -from ..variable import OptVariable +from ..variable import OptSymbol class MOSEKInfo(SolverInfo): @@ -40,7 +40,7 @@ def setup(license_file: Path | str | None = None): def solve_cone(prob: Problem, verbose: bool = False, - *args, **kwargs) -> tuple[dict[OptVariable, float], MOSEKInfo]: + *args, **kwargs) -> tuple[dict[OptSymbol, float], MOSEKInfo]: r""" Solve a conic problem in the cone of SOS polynomials :math:`\mathbf{\Sigma}_d(x)` using MOSEK. diff --git a/sumofsquares/solver/scs.py b/sumofsquares/solver/scs.py index e7ab6b8..a476700 100644 --- a/sumofsquares/solver/scs.py +++ b/sumofsquares/solver/scs.py @@ -14,7 +14,7 @@ from typing import TYPE_CHECKING from ..abc import SolverInfo from ..error import SolverError -from ..variable import OptVariable +from ..variable import OptSymbol if TYPE_CHECKING: from ..problems import ConicProblem @@ -64,7 +64,7 @@ def mat(v: NDArray) -> NDArray: def solve_cone(prob: ConicProblem, verbose: bool = False, - *args, **kwargs) -> tuple[dict[OptVariable, float], SCSInfo]: + *args, **kwargs) -> tuple[dict[OptSymbol, float], SCSInfo]: r""" Any `*args` and `**kwargs` other than `prob` and `verbose` are passed directly to the SCS solver call. @@ -153,9 +153,9 @@ def solve_cone(prob: ConicProblem, verbose: bool = False, return {}, SCSInfo(sol["info"]) results, i = {}, 0 - for variable in prob.variables: - num_indices = math.prod(variable.shape) - values = np.array(sol["x"][i:i+num_indices]).reshape(variable.shape) + for variable, shape in prob.variables.items(): + num_indices = math.prod(shape) + values = np.array(sol["x"][i:i+num_indices]).reshape(shape) if values.shape == (1, 1): values = values[0, 0] diff --git a/sumofsquares/variable.py b/sumofsquares/variable.py index 2989732..59d771b 100644 --- a/sumofsquares/variable.py +++ b/sumofsquares/variable.py @@ -23,14 +23,14 @@ from polymatrix.expressionstate import ExpressionState from polymatrix.polymatrix.index import PolyMatrixDict, PolyDict, MonomialIndex, VariableIndex from polymatrix.polymatrix.init import init_poly_matrix from polymatrix.polymatrix.mixins import PolyMatrixMixin -from polymatrix.variable import Variable +from polymatrix.symbol import Symbol -class OptVariable(Variable): - """ Optimization (decision) variable. """ +class OptSymbol(Symbol): + """ Symbol for an optimization (decision) variable. """ -class OptVariableMixin(ExpressionBaseMixin, OptVariable): +class OptVariableExprMixin(ExpressionBaseMixin): """ Optimization (decision) variable mixin for expression object. """ @override @@ -39,7 +39,12 @@ class OptVariableMixin(ExpressionBaseMixin, OptVariable): def shape(self) -> tuple[int, int] | ExpressionBaseMixin: """ Shape of the optimization variable expression. """ - @override + @property + @abstractmethod + def symbol(self) -> OptSymbol: + """ Symbol of the optimization variable. """ + + # @override def apply(self, state: ExpressionState) -> tuple[ExpressionState, PolyMatrixMixin]: if isinstance(self.shape, ExpressionBaseMixin): state, shape_pm = self.shape.apply(state) @@ -52,19 +57,18 @@ class OptVariableMixin(ExpressionBaseMixin, OptVariable): ncols = int(shape_pm.at(1, 0).constant()) # Replace shape field with computed shape - v = replace(self, shape=(nrows, ncols)) - state = state.register(v) - indices = state.get_indices(v) + state = state.register(self.symbol, shape=(nrows, ncols)) elif isinstance(self.shape, tuple): - nrows, ncols = self.shape - state = state.register(self) - indices = state.get_indices(self) + nrows, ncols = self.shape # for for loop below + state = state.register(self.symbol, self.shape) else: raise ValueError("Shape must be a tuple or expression that " f"evaluates to a 2d row vector, cannot be of type {type(self.shape)}") + indices = state.get_indices(self.symbol) + p = PolyMatrixDict() for (row, col), index in zip(product(range(nrows), range(ncols)), indices): p[row, col] = PolyDict({ @@ -77,23 +81,23 @@ class OptVariableMixin(ExpressionBaseMixin, OptVariable): @dataclassabc(frozen=True) -class OptVariableImpl(OptVariableMixin): - name: str - shape: tuple[int, int] | ExpressionBaseMixin +class OptVariableExprImpl(OptVariableExprMixin): + symbol: OptSymbol + shape: str def __str__(self): - return self.name + return self.symbol -def init_opt_variable_expr(name, shape): - return OptVariableImpl(name, shape) +def init_opt_variable_expr(variable, shape): + return OptVariableExprImpl(variable, shape) def from_name(name: str, shape: tuple[int, int] | ExpressionBaseMixin = (1, 1)) -> VariableExpression: """ Construct an optimization variable. """ if isinstance(shape, Expression): shape = shape.underlying - return init_variable_expression(underlying=init_opt_variable_expr(name, shape)) + return init_variable_expression(underlying=init_opt_variable_expr(OptSymbol(name), shape)) def from_names(names: str, shape: tuple[int, int] | ExpressionBaseMixin = (1, 1)) -> Iterable[VariableExpression]: |