summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--sumofsquares/abc.py4
-rw-r--r--sumofsquares/problems.py63
-rw-r--r--sumofsquares/solver/cvxopt.py10
-rw-r--r--sumofsquares/solver/mosek.py4
-rw-r--r--sumofsquares/solver/scs.py10
-rw-r--r--sumofsquares/variable.py40
6 files changed, 69 insertions, 62 deletions
diff --git a/sumofsquares/abc.py b/sumofsquares/abc.py
index 20f4bd6..2f852df 100644
--- a/sumofsquares/abc.py
+++ b/sumofsquares/abc.py
@@ -5,7 +5,7 @@ from abc import ABC, abstractmethod
from enum import Enum, auto
from typing import Any, Generic, TypeVar
-from sumofsquares.variable import OptVariable
+from sumofsquares.variable import OptSymbol
# ┏━┓┏━┓╻ ╻ ╻┏━╸┏━┓
@@ -52,7 +52,7 @@ class Constraint(ABC, Generic[E]):
class Result(ABC):
""" Result of an optimization problem. """
@abstractmethod
- def value_of(self, var: OptVariable) -> float:
+ def value_of(self, var: OptSymbol) -> float:
""" Retrieve value of variable. """
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
index f4f3d7b..7bcd629 100644
--- a/sumofsquares/problems.py
+++ b/sumofsquares/problems.py
@@ -17,17 +17,18 @@ from typing_extensions import override
from polymatrix.expression.expression import Expression, VariableExpression
from polymatrix.expression.mixins.expressionbasemixin import ExpressionBaseMixin
+from polymatrix.expression.init import init_variable_expr
from polymatrix.expressionstate import ExpressionState
from polymatrix.polymatrix.mixins import PolyMatrixMixin
from polymatrix.polymatrix.index import MonomialIndex, VariableIndex
-from polymatrix.variable import Variable
+from polymatrix.symbol import Symbol
from .abc import Problem, Constraint, Solver, Result
from .constraints import NonNegative, EqualToZero, PositiveSemiDefinite, ExponentialCone
from .solver.cvxopt import solve_cone as cvxopt_solve_cone
from .solver.scs import solve_cone as scs_solve_cone
from .utils import partition
-from .variable import OptVariable
+from .variable import OptVariableExprMixin, OptSymbol
# ┏━╸┏━┓┏┓╻╻┏━╸ ┏━┓┏━┓┏━┓┏┓ ╻ ┏━╸┏┳┓
@@ -89,7 +90,7 @@ class ConicProblem(Problem):
"""
solver: Solver
- variables: Sequence[OptVariable]
+ variables: dict[OptSymbol, tuple[int, int]]
@property
@override
@@ -112,32 +113,24 @@ class ConicProblem(Problem):
@dataclassabc(frozen=True)
class ConicResult(Result):
""" Result of a Conic Problem """
- values: dict[OptVariable, float]
+ values: dict[OptSymbol, float]
solver_info: Any
@override
- def value_of(self, var: OptVariable | VariableExpression) -> float:
+ def value_of(self, var: OptSymbol| VariableExpression) -> float:
if isinstance(var, VariableExpression):
- if not isinstance(var.underlying, OptVariable):
+ if not isinstance(var.underlying, OptVariableExprMixin):
# TODO: error message
raise ValueError
# Unwrap the expression
- var = var.underlying
+ symbol = var.underlying.symbol
- if var not in self.values:
- # FIXME: this is a temporary fix here.
- if isinstance(var.shape, ExpressionBaseMixin):
- state = poly.make_state()
- state, shapepm = var.shape.apply(state)
- shape = (shapepm.at(0,0).constant(), shapepm.at(1,0).constant())
- var = replace(var, shape=shape)
+ if var not in self.values:
+ raise KeyError(f"There is no result for the variable {var}. "
+ f"Was the problem successfully solved?")
- if var not in self.values:
- raise KeyError(f"There is no result for the variable {var}. "
- f"Was the problem successfully solved?")
-
- return self.values[var]
+ return self.values[symbol]
# ┏━┓╻ ╻┏┳┓ ┏━┓┏━╸ ┏━┓┏━┓╻ ╻┏━┓┏━┓┏━╸┏━┓ ┏━┓┏━┓┏━┓┏━╸┏━┓┏━┓┏┳┓
@@ -201,17 +194,19 @@ class SOSProblem(Problem):
state, pm = c.expression.apply(state)
variable_indices.update(pm.variables())
- variables = set(state.get_variable_from_variable_index(v)
+ variables = set(state.get_symbol_from_variable_index(v)
for v in variable_indices)
- # Collect variables
- def is_optvariable(v):
- return isinstance(v, OptVariable)
+ # Collect optimization variables
+ def is_opt(v):
+ return isinstance(v, OptSymbol)
- polynomial_variables, variables = partition(is_optvariable, variables)
+ polynomial_variables, variables = partition(is_opt, variables)
polynomial_variables = tuple(polynomial_variables) # because it is a generator
- x = poly.v_stack((1,) + polynomial_variables)
+ x = poly.v_stack((1,) + tuple(
+ init_variable_expr(v, state.get_shape(v))
+ for v in polynomial_variables))
for i, c in enumerate(self.constraints):
if isinstance(c, EqualToZero):
state, deg = c.expression.degree().apply(state)
@@ -309,14 +304,14 @@ class InternalSOSProblem(Problem):
"""
cost: PolyMatrixMixin
constraints: Sequence[Constraint[PolyMatrixMixin]]
- variables: Sequence[OptVariable]
- polynomial_variables: Sequence[Variable]
+ variables: Sequence[OptSymbol]
+ polynomial_variables: Sequence[Symbol]
solver: Solver
# TODO: remove state field from this class, it is redundant
state: ExpressionState
- def to_conic_problem(self) -> ConicProblem:
+ def to_conic_problem(self, verbose: bool = False) -> ConicProblem:
"""
Conver the SOS problem into a Conic program.
"""
@@ -410,12 +405,20 @@ class InternalSOSProblem(Problem):
if all(len(cl) == 0 for cl in constraints.values()):
raise ValueError("Optimization problem is unconstrained!")
+ if verbose:
+ # print("Conic problem has shapes: \n"
+ # f"\t {q.shape = }\n")
+ pass
+
+
return ConicProblem(P=P, q=q, constraints=constraints,
dims=dims, is_qp=is_qp,
solver=self.solver,
- variables=self.variables)
+ variables={v : self.state.get_shape(v)
+ for v in self.variables
+ })
@override
def solve(self, verbose: bool = False) -> Result:
- return self.to_conic_problem().solve(verbose)
+ return self.to_conic_problem(verbose).solve(verbose)
diff --git a/sumofsquares/solver/cvxopt.py b/sumofsquares/solver/cvxopt.py
index 1c37fbe..0692787 100644
--- a/sumofsquares/solver/cvxopt.py
+++ b/sumofsquares/solver/cvxopt.py
@@ -14,7 +14,7 @@ from pprint import pprint
from ..abc import SolverInfo
from ..error import SolverError, NotSupportedBySolver
-from ..variable import OptVariable
+from ..variable import OptSymbol
if TYPE_CHECKING:
from ..problems import ConicProblem
@@ -42,7 +42,7 @@ def vectorize_matrix(m: NDArray) -> NDArray:
def solve_cone(prob: ConicProblem, verbose: bool = False,
- *args, **kwargs) -> tuple[dict[OptVariable, NDArray | float], CVXOPTInfo]:
+ *args, **kwargs) -> tuple[dict[OptSymbol, NDArray | float], CVXOPTInfo]:
r"""
Any `*args` and `**kwargs` other than `prob` and `vebose` are passed to the
CVXOPT solver.
@@ -150,9 +150,9 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
return {}, CVXOPTInfo(info)
results, i = {}, 0
- for variable in prob.variables:
- num_indices = math.prod(variable.shape)
- values = np.array(info["x"][i:i+num_indices]).reshape(variable.shape)
+ for variable, shape in prob.variables.items():
+ num_indices = math.prod(shape)
+ values = np.array(info["x"][i:i+num_indices]).reshape(shape)
if values.shape == (1, 1):
values = values[0, 0]
diff --git a/sumofsquares/solver/mosek.py b/sumofsquares/solver/mosek.py
index de4f92f..6a8ce25 100644
--- a/sumofsquares/solver/mosek.py
+++ b/sumofsquares/solver/mosek.py
@@ -9,7 +9,7 @@ import mosek
from pathlib import Path
from ..abc import Problem, SolverInfo
-from ..variable import OptVariable
+from ..variable import OptSymbol
class MOSEKInfo(SolverInfo):
@@ -40,7 +40,7 @@ def setup(license_file: Path | str | None = None):
def solve_cone(prob: Problem, verbose: bool = False,
- *args, **kwargs) -> tuple[dict[OptVariable, float], MOSEKInfo]:
+ *args, **kwargs) -> tuple[dict[OptSymbol, float], MOSEKInfo]:
r"""
Solve a conic problem in the cone of SOS polynomials
:math:`\mathbf{\Sigma}_d(x)` using MOSEK.
diff --git a/sumofsquares/solver/scs.py b/sumofsquares/solver/scs.py
index e7ab6b8..a476700 100644
--- a/sumofsquares/solver/scs.py
+++ b/sumofsquares/solver/scs.py
@@ -14,7 +14,7 @@ from typing import TYPE_CHECKING
from ..abc import SolverInfo
from ..error import SolverError
-from ..variable import OptVariable
+from ..variable import OptSymbol
if TYPE_CHECKING:
from ..problems import ConicProblem
@@ -64,7 +64,7 @@ def mat(v: NDArray) -> NDArray:
def solve_cone(prob: ConicProblem, verbose: bool = False,
- *args, **kwargs) -> tuple[dict[OptVariable, float], SCSInfo]:
+ *args, **kwargs) -> tuple[dict[OptSymbol, float], SCSInfo]:
r"""
Any `*args` and `**kwargs` other than `prob` and `verbose` are passed
directly to the SCS solver call.
@@ -153,9 +153,9 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
return {}, SCSInfo(sol["info"])
results, i = {}, 0
- for variable in prob.variables:
- num_indices = math.prod(variable.shape)
- values = np.array(sol["x"][i:i+num_indices]).reshape(variable.shape)
+ for variable, shape in prob.variables.items():
+ num_indices = math.prod(shape)
+ values = np.array(sol["x"][i:i+num_indices]).reshape(shape)
if values.shape == (1, 1):
values = values[0, 0]
diff --git a/sumofsquares/variable.py b/sumofsquares/variable.py
index 2989732..59d771b 100644
--- a/sumofsquares/variable.py
+++ b/sumofsquares/variable.py
@@ -23,14 +23,14 @@ from polymatrix.expressionstate import ExpressionState
from polymatrix.polymatrix.index import PolyMatrixDict, PolyDict, MonomialIndex, VariableIndex
from polymatrix.polymatrix.init import init_poly_matrix
from polymatrix.polymatrix.mixins import PolyMatrixMixin
-from polymatrix.variable import Variable
+from polymatrix.symbol import Symbol
-class OptVariable(Variable):
- """ Optimization (decision) variable. """
+class OptSymbol(Symbol):
+ """ Symbol for an optimization (decision) variable. """
-class OptVariableMixin(ExpressionBaseMixin, OptVariable):
+class OptVariableExprMixin(ExpressionBaseMixin):
""" Optimization (decision) variable mixin for expression object. """
@override
@@ -39,7 +39,12 @@ class OptVariableMixin(ExpressionBaseMixin, OptVariable):
def shape(self) -> tuple[int, int] | ExpressionBaseMixin:
""" Shape of the optimization variable expression. """
- @override
+ @property
+ @abstractmethod
+ def symbol(self) -> OptSymbol:
+ """ Symbol of the optimization variable. """
+
+ # @override
def apply(self, state: ExpressionState) -> tuple[ExpressionState, PolyMatrixMixin]:
if isinstance(self.shape, ExpressionBaseMixin):
state, shape_pm = self.shape.apply(state)
@@ -52,19 +57,18 @@ class OptVariableMixin(ExpressionBaseMixin, OptVariable):
ncols = int(shape_pm.at(1, 0).constant())
# Replace shape field with computed shape
- v = replace(self, shape=(nrows, ncols))
- state = state.register(v)
- indices = state.get_indices(v)
+ state = state.register(self.symbol, shape=(nrows, ncols))
elif isinstance(self.shape, tuple):
- nrows, ncols = self.shape
- state = state.register(self)
- indices = state.get_indices(self)
+ nrows, ncols = self.shape # for for loop below
+ state = state.register(self.symbol, self.shape)
else:
raise ValueError("Shape must be a tuple or expression that "
f"evaluates to a 2d row vector, cannot be of type {type(self.shape)}")
+ indices = state.get_indices(self.symbol)
+
p = PolyMatrixDict()
for (row, col), index in zip(product(range(nrows), range(ncols)), indices):
p[row, col] = PolyDict({
@@ -77,23 +81,23 @@ class OptVariableMixin(ExpressionBaseMixin, OptVariable):
@dataclassabc(frozen=True)
-class OptVariableImpl(OptVariableMixin):
- name: str
- shape: tuple[int, int] | ExpressionBaseMixin
+class OptVariableExprImpl(OptVariableExprMixin):
+ symbol: OptSymbol
+ shape: str
def __str__(self):
- return self.name
+ return self.symbol
-def init_opt_variable_expr(name, shape):
- return OptVariableImpl(name, shape)
+def init_opt_variable_expr(variable, shape):
+ return OptVariableExprImpl(variable, shape)
def from_name(name: str, shape: tuple[int, int] | ExpressionBaseMixin = (1, 1)) -> VariableExpression:
""" Construct an optimization variable. """
if isinstance(shape, Expression):
shape = shape.underlying
- return init_variable_expression(underlying=init_opt_variable_expr(name, shape))
+ return init_variable_expression(underlying=init_opt_variable_expr(OptSymbol(name), shape))
def from_names(names: str, shape: tuple[int, int] | ExpressionBaseMixin = (1, 1)) -> Iterable[VariableExpression]: