summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--sumofsquares/problems.py64
1 files changed, 42 insertions, 22 deletions
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
index c313419..bfb13c3 100644
--- a/sumofsquares/problems.py
+++ b/sumofsquares/problems.py
@@ -10,6 +10,7 @@ import numpy as np
from dataclassabc import dataclassabc
from dataclasses import replace
+from itertools import groupby
from numpy.typing import NDArray
from typing import Any, Sequence
from typing_extensions import override
@@ -179,14 +180,14 @@ class SOSProblem(Problem):
"""
Convert to internal SOS problem by applying state to the expressions.
- **Technical Note:** The internal SOS problem may only constraints that
- are linear in the optimization variables, hence, conversion of
+ **Technical Note:** The internal SOS problem may only have constraints
+ that are affine in the optimization variables, hence, conversion of
polynomial equality / non-negativity constraints are done here.
Likewise the cost function must also be reduced to quadratic expression
here.
"""
- constraints: list[Constraint[PolyMatrixMixin]] = []
+ constraints: list[Constraint] = []
state, cost = self.cost.apply(state)
# Compute the polymatrix of each constraint expression. Even though the
@@ -213,13 +214,12 @@ class SOSProblem(Problem):
# Polynomial equality must be converted into coefficient
# matching condition
if deg.scalar().constant() > 1:
- state, pm = c.expression.linear_in(x).apply(state)
- constraints.append(replace(c, expression=pm))
+ cnew = c.expression.linear_in(x)
+ constraints.append(replace(c, expression=cnew))
- # A normal (linear) equality
+ # A normal (affine) equality
else:
- state, pm = c.expression.apply(state)
- constraints.append(replace(c, expression=pm))
+ constraints.append(c)
elif isinstance(c, NonNegative):
if c.domain:
@@ -234,38 +234,58 @@ class SOSProblem(Problem):
# constraint of SOS quadratic form
if deg.scalar().constant() > 1:
# TODO: it seems to work fine even without .symmetric(). Why?
- state, pm = c.expression.quadratic_in(x).symmetric().apply(state)
- constraints.append(PositiveSemiDefinite(pm))
+ cnew = c.expression.quadratic_in(x).symmetric()
+ constraints.append(PositiveSemiDefinite(cnew))
- # A normal (linear) constraint
+ # A normal (affine) constraint
else:
- state, pm = c.expression.apply(state)
- constraints.append(replace(c, expression=pm))
+ constraints.append(c)
elif isinstance(c, PositiveSemiDefinite):
- state, pm = c.expression.apply(state)
+ state, pm = c.expression.cache().apply(state)
nrows, ncols = pm.shape
if nrows != ncols:
raise ValueError(f"PSD constraint cannot contain non-square matrix of shape ({nrows, ncols})!")
# PSD constraint can be passed as-is
- constraints.append(replace(c, expression=pm))
+ constraints.append(c)
elif isinstance(c, ExponentialCone):
- state, pm = c.expression.apply(state)
- nrows, ncols = pm.shape
+ state, pm = c.expression.shape.apply(state)
- if ncols != 3:
+ if pm.at(1, 0).constant() != 3:
raise ValueError("Conic constraint must be a row vector [x, y, z] ",
"or for multiple constraints it must be an n x 3 "
f"matrix! Given expression has wrong shape {pm.shape}.")
- constraints.append(replace(c, expresssion=pm))
+ constraints.append(c)
else:
raise NotImplementedError(f"Cannot process constraint of type {type(c)} (yet).")
- return state, InternalSOSProblem(cost, tuple(constraints),
+ # Convert Expressions into PolyMatrix objects
+ # Concatenate constraints so that there is only a big constraint per cone.
+ pm_constraints: list[Constraint[PolyMatrixMixin]] = []
+
+ # TODO: can we get rid of for loop inside InternalSOSProblem.to_conic_problem?
+ for (ctype, group) in groupby(constraints, key=type):
+ if ctype in (EqualToZero, NonNegative):
+ state, pm = poly.v_stack((c.expression for c in group)).apply(state)
+ pm_constraints.append(ctype(pm))
+
+ elif ctype is PositiveSemiDefinite:
+ expressions = (c.expression for c in group)
+ state, pm = poly.block_diag(expressions).apply(state)
+ pm_constraints.append(ctype(pm))
+
+ elif ctype is ExponentialCone:
+ state, pm = poly.v_stack((c.expression for c in group)).apply(state)
+ pm_constraints.append(ctype(pm))
+
+ else:
+ raise NotImplementedError(f"Cannot process constraint of type {ctype} (yet).")
+
+ return state, InternalSOSProblem(cost, tuple(pm_constraints),
tuple(variables), polynomial_variables,
self.solver, state)
@@ -349,8 +369,8 @@ class InternalSOSProblem(Problem):
nrows, ncols = constr.shape
if constr.degree > 1:
- # If this error occurs an it is not the user's fault, there is a bug in
- # SOSProblem.apply
+ # If this error occurs an it is not the user's fault, there is
+ # a bug in SOSProblem.apply
raise ValueError("To convert to conic constraints must be linear or affine "
f"but {str(c.expression)} has degree {constr.degree}.")