summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--sumofsquares/canon.py139
1 files changed, 80 insertions, 59 deletions
diff --git a/sumofsquares/canon.py b/sumofsquares/canon.py
index 0874e2c..17ad187 100644
--- a/sumofsquares/canon.py
+++ b/sumofsquares/canon.py
@@ -31,6 +31,24 @@ class Canonicalization:
s = f"Apply canonicalization procedure {self.__class__.__qualname__} to\n"
return s + str(self.problem)
+ @abstractmethod
+ def __call__(self, problem : SOSProblem | None = None) -> SOSProblem:
+ # TODO: is this a good idea? probably not but I don't want to introduce
+ # a new type of class for "horizontal" function in the commutative
+ # diagram. The idea is to make canon objects behave like functions
+ # so that given a problem P, you can do Canon2(Canon1(P)), but this
+ # needs a default implementation if the transformation is a stateful
+ # computation, which would need a statemonad, defeating the purpose of
+ # creating this class in the first place.
+ """
+ Apply the canonicalization procedure to the given problem, or to
+ `self.problem` if `problem` is None.
+
+ Override this method to write transformation if it can be written
+ without having to apply the state. I.e. it is not stateful in the
+ problem.
+ """
+
@property
@abstractmethod
def problem(self) -> SOSProblem:
@@ -45,7 +63,12 @@ class Canonicalization:
@abstractmethod
def apply(self, state: ExpressionState) -> tuple[ExpressionState, InternalSOSProblem]:
- """ Apply the canonicalization procedure """
+ """
+ Apply the canonicalization procedure.
+
+ Override this method to write a transformation if it is stateful in the
+ problem, and hence "needs to be performed later".
+ """
@dataclassabc(frozen=True)
@@ -58,74 +81,59 @@ class PutinarPSatz(Canonicalization):
problem: SOSProblem
- @staticmethod
- def make_multiplier(variables: Sequence[OptVariable],
- polynomial_variables: Sequence[Variable],
- constr: Expression,
- domain_poly: Expression,
- multiplier_name: str) -> Expression:
- r"""
- Make a multiplier polynomial for a domain polynomial of a constraint.
-
- Since Putinar's PSatz does not explicity tell us the order of the
- multiplier this function will make a multiplier, let's call it
- :math:`\gamma`, such that :math:`\deg(\gamma * p) = \deg(c)`, wherein
- :math:`p` is the domain polynomial and :math:`c` is the contraint
- polynomial.
- """
- # Number of variables in the original problem
- q = sum(math.prod(v.shape) for v in variables)
- x = poly.v_stack((1,) + tuple(polynomial_variables))
-
- def make_multiplier_later(state: ExpressionState) -> tuple[ExpressionState, PolyMatrixMixin]:
- state, constr_pm = constr.expression.degree().apply(state)
- state, domain_poly_pm = domain_poly.degree().apply(state)
-
- constr_deg = constr_pm.at(0, 0).constant()
- domain_poly_deg = domain_poly_pm.at(0, 0).constant()
-
- # degree of multiplier
- d = constr_deg - domain_poly_deg
- if d < 0:
- raise AlgebraicError("Cannot create Positivstellensatz multiplier because "
- f"constraint polynomial has degree {constr_deg} and domain "
- f"polynomial {domain_poly} has degree {domain_poly_deg}")
-
- n = sum(math.comb(k + q - 1, k) for k in range(0, d+1))
-
- # TODO: check that there is not a variable with this name already
- # Coefficients of the multiplier polynomial
- c = opt_variable_from_name(multiplier_name, shape=(1,n))
- multiplier = c @ x.combinations(tuple(range(d +1)))
-
- return multiplier.apply(state)
- return poly.from_state_monad(init_state_monad(make_multiplier_later))
-
- # TODO: rewrite this function, this is adapted from how it was done
- # previously, and it works but it's not efficient.
- @abstractmethod
+ @override
def apply(self, state: ExpressionState) -> tuple[ExpressionState, InternalSOSProblem]:
def need_positivstellensatz(c: Constraint) -> bool:
return isinstance(c, NonNegative) and (c.domain is not None)
constraints, to_process = partition(need_positivstellensatz, self.problem.constraints)
- constraints = tuple(constraints) # because it is a generator
+ constraints = tuple(constraints)
+ to_process = tuple(to_process)
+
+ # Evaluate expression to gather all variables
+ for c in to_process:
+ state, _ = c.expression.apply(state)
+ for p in c.domain.polynomials:
+ state, _ = p.apply(state)
- state, prob = self.problem.apply(state)
+ state, prob = replace(self.problem, constraints=constraints).apply(state)
+ # Create new constraints
new_constraints: list[Constraint] = list(constraints)
for i, constr in enumerate(to_process):
new_constr = constr.expression
for domain_poly in constr.domain.polynomials:
- # FIXME: need to check that there is not a \gamma_{i}!
- m = PutinarPSatz.make_multiplier(prob.variables,
- prob.polynomial_variables,
- constr, domain_poly, rf"\gamma_{i}")
+ # Make a multiplier polynomial for a domain polynomial of a constraint.
+ #
+ # Since Putinar's PSatz does not explicity tell us the order of the
+ # multiplier this function will make a multiplier, let's call it
+ # :math:`\gamma`, such that :math:`\deg(\gamma * p) = \deg(c)`, wherein
+ # :math:`p` is the domain polynomial and :math:`c` is the contraint
+ # polynomial.
+
+ # FIXME: create an extension poly_degree and opt_degree to get
+ # the maximul degree of the polynomial and the degree of the
+ # optimization variables respectively.
+ constr_deg = constr.expression.eval({v: 1. for v in prob.variables}).degree()
+ domain_deg = domain_poly.eval({v: 1. for v in prob.variables}).degree()
+
+ d = constr_deg - domain_deg
+ x = poly.v_stack((1,) + prob.polynomial_variables)
+
+ # FIXME: proper error here
+ assert d.read(state).scalar().constant() >= 0, \
+ "Degree of domain polynomial is higher than constraint polynomial!"
+
+ # FIXME: need to check that there is not a \gamma_{i} already!
+ monomials = x.combinations(poly.arange(d + 1))
+ c = opt_variable_from_name(rf"\gamma_{i}", shape=monomials.shape)
+
+ multiplier = c.T @ monomials
# Subtract multiplier from expression and impose that it is also SOS
- new_constr -= m * domain_poly
- new_constraints.append(NonNegative(m))
+ new_constr -= multiplier * domain_poly
+ new_constraints.append(NonNegative(multiplier))
new_constraints.append(NonNegative(new_constr))
return replace(self.problem, constraints=new_constraints).apply(state)
@@ -133,7 +141,13 @@ class PutinarPSatz(Canonicalization):
@dataclassabc(frozen=True)
class LogDet(Canonicalization):
+ # TODO: reconsider extension of polymatrix Expression objects to introduce
+ # logdet expression. The current solution works but is not ideal, as it may
+ # be a bit counterintuitive.
"""
+ Create a new problem, whose cost function is the logdet of the given
+ problem's cost function.
+
The problem
maximize logdet(A)
@@ -171,8 +185,11 @@ class LogDet(Canonicalization):
problem: SOSProblem
@override
- def apply(self, state: ExpressionState) -> tuple[ExpressionState, InternalSOSProblem]:
- A = self.problem.cost
+ def __call__(self, problem : SOSProblem | None = None) -> SOSProblem:
+ if problem is None:
+ problem = self.problem
+
+ A = problem.cost
# FIXME: should check for name clashes in state object
# i.e. what if there is already a variable named u_logdet / Z_logdet?
@@ -188,7 +205,11 @@ class LogDet(Canonicalization):
E = poly.h_stack((Z.diag(), poly.ones((n, 1)), u))
new_cost = - u.T.sum()
- new_constraints = [PositiveSemiDefinite(Q), ExponentialCone(E)]
+ new_constraints = tuple(problem.constraints) + (PositiveSemiDefinite(Q), ExponentialCone(E))
+
+ return replace(problem, cost=new_cost, constraints=new_constraints)
- raise NotImplementedError
+ @override
+ def apply(self, state: ExpressionState) -> tuple[ExpressionState, InternalSOSProblem]:
+ return self().apply(state)