summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--sumofsquares/error.py4
-rw-r--r--sumofsquares/problems.py24
2 files changed, 20 insertions, 8 deletions
diff --git a/sumofsquares/error.py b/sumofsquares/error.py
index 34ea6d8..1f30b2a 100644
--- a/sumofsquares/error.py
+++ b/sumofsquares/error.py
@@ -5,3 +5,7 @@ Errors and exceptions raised by the sum of squares package.
class NotSupportedBySolver(Exception):
""" The chosen solver cannot solve this problem. """
+
+class AlgebraicError(Exception):
+ """ TODO """
+
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
index 14a9cd9..3ec3f54 100644
--- a/sumofsquares/problems.py
+++ b/sumofsquares/problems.py
@@ -19,6 +19,7 @@ from polymatrix.variable.abc import Variable
from .abc import Problem, Constraint, Solver, Result
from .constraints import NonNegative
+from .error import AlgebraicError
from .solver.cvxopt import solve_sos_cone as cvxopt_solve_sos_cone
from .utils import partition
from .variable import OptVariable, from_name as opt_variable_from_name
@@ -84,9 +85,6 @@ class PutinarSOSProblem(Problem):
x = poly.v_stack((1,) + tuple(self.polynomial_variables))
for i, constr in enumerate(to_process):
- # For each polynomial that defines the archimedean set
- # we create a multiplier polynomial of the same degree
-
# FIXME: this is not optimal, look into how to determine the
# smallest degree needed to make the positivstellensatz work.
new_constr = constr.expression
@@ -94,9 +92,19 @@ class PutinarSOSProblem(Problem):
# To know the degree of the polynomial we need to evaluate the
# expression, hence we use a monad here
def make_multiplier(state):
- state, p = domain_poly.degree().apply(state)
-
- d = p.at(0, 0).constant()
+ state, constr_pm = constr.expression.degree().apply(state)
+ state, domain_poly_pm = domain_poly.degree().apply(state)
+
+ constr_deg = constr_pm.at(0, 0).constant()
+ domain_poly_deg = domain_poly_pm.at(0, 0).constant()
+
+ # degree of multiplier
+ d = constr_deg - domain_poly_deg
+ if d < 0:
+ raise AlgebraicError("Cannot create Positivstellensatz multiplier because "
+ f"constraint polynomial has degree {constr_deg} and domain "
+ f"polynomial {domain_poly} has degree {domain_poly_deg}")
+
n = sum(math.comb(k + q - 1, k) for k in range(0, d+1))
# TODO: check that there is not a variable with this name already
@@ -119,8 +127,8 @@ class PutinarSOSProblem(Problem):
# Convert to polymatrix object to extract variables
new_state = self.state
- for constr in new_constraints:
- new_state, _ = constr.expression.apply(new_state)
+ for c in new_constraints:
+ new_state, _ = c.expression.apply(new_state)
def is_optvariable(v):
return isinstance(v, OptVariable)