summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--sumofsquares/canon.py95
-rw-r--r--sumofsquares/problems.py41
2 files changed, 92 insertions, 44 deletions
diff --git a/sumofsquares/canon.py b/sumofsquares/canon.py
index 8c4b541..9ba0639 100644
--- a/sumofsquares/canon.py
+++ b/sumofsquares/canon.py
@@ -9,11 +9,12 @@ from typing_extensions import override
from polymatrix.expression.from_ import Expression
from polymatrix.expression.init import init_variable_expr
from polymatrix.expressionstate import ExpressionState
+from polymatrix.polymatrix.index import VariableIndex
from .abc import Problem, Solver, Constraint, Result
from .constraints import NonNegative, PositiveSemiDefinite, ExponentialCone
from .problems import SOSProblem, InternalSOSProblem
-from .variable import from_name as opt_variable_from_name
+from .variable import OptSymbol, from_name as opt_variable_from_name
from .utils import partition
@@ -26,7 +27,7 @@ class Canonicalization(Problem):
s = f"Apply canonicalization procedure {self.__class__.__qualname__} to\n"
return s + str(self.problem)
- def __call__(self, problem : SOSProblem | None = None) -> SOSProblem:
+ def __call__(self, problem : SOSProblem) -> SOSProblem:
# TODO: is this a good idea? probably not but I don't want to introduce
# a new type of class for "horizontal" function in the commutative
# diagram. The idea is to make canon objects behave like functions
@@ -35,8 +36,7 @@ class Canonicalization(Problem):
# computation, which would need a statemonad, defeating the purpose of
# creating this class in the first place.
"""
- Apply the canonicalization procedure to the given problem, or to
- `self.problem` if `problem` is None.
+ Apply the canonicalization procedure to the given problem.
Override this method to write transformation if it can be written
without having to apply the state. I.e. it is not stateful in the
@@ -59,8 +59,7 @@ class Canonicalization(Problem):
@property
@override
def solver(self) -> Solver:
- # TODO: error message
- raise AttributeError
+ return self.problem.solver
@property
@abstractmethod
@@ -92,6 +91,12 @@ class PutinarPSatz(Canonicalization):
problem: SOSProblem
+ @property
+ @override
+ def cost(self) -> Expression:
+ # PSatz does not change cost function
+ return self.problem.cost
+
@override
def apply(self, state: ExpressionState) -> tuple[ExpressionState, InternalSOSProblem]:
@@ -102,18 +107,57 @@ class PutinarPSatz(Canonicalization):
constraints = tuple(constraints)
to_process = tuple(to_process)
- # Evaluate expression to gather all variables
+ # Variables that are involved in the problem
+ variable_indices: set[VariableIndex] = set()
+
+ # Evaluate expressions of constraints tha need to be processed
+ # to gather all variables
for c in to_process:
- state, _ = c.expression.apply(state)
+ state, pm = c.expression.apply(state)
+ variable_indices |= pm.variables()
+
for p in c.domain.polynomials:
- state, _ = p.apply(state)
+ state, pm = p.apply(state)
+ variable_indices |= pm.variables()
+
+ # Get symbols of the variables
+ to_process_symbols = set(state.get_symbol_from_variable_index(v)
+ for v in variable_indices)
+
+ # Separate between symbols of optimization variables and those of polynomial variables
+ def is_opt(v):
+ return isinstance(v, OptSymbol)
+ polynomial_symbols, symbols = partition(is_opt, to_process_symbols)
+
+ # Get variables from rest of the problem
state, prob = replace(self.problem, constraints=constraints).apply(state)
+ symbols = tuple(set(symbols) | set(prob.symbols))
+ polynomial_symbols = tuple(set(polynomial_symbols) | set(prob.polynomial_symbols))
+
+ # Vector of polynomial variables
+ x = poly.v_stack((1,) + tuple(init_variable_expr(v, state.get_shape(v))
+ for v in polynomial_symbols))
# Create new constraints
new_constraints: list[Constraint] = list(constraints)
for i, constr in enumerate(to_process):
- new_constr = constr.expression
+ # FIXME: create an extension poly_degree and opt_degree to get
+ # the maximul degree of the polynomial and the degree of the
+ # optimization variables respectively.
+ constr_deg = constr.expression.linear_in(x).degree().max()
+
+ # Add first term in the quadratic module
+ d = constr_deg
+ if d.read(state).scalar().constant() % 2 != 0:
+ d += 1
+
+ monomials = x.combinations(poly.arange(d + 1)).half_newton_polytope(x)
+ coeffs = opt_variable_from_name(rf"\gamma_{i},c", shape=monomials.shape)
+
+ new_constr = constr.expression - coeffs.T @ monomials
+
+ # Add other terms of the quadratic module
for j, domain_poly in enumerate(constr.domain.polynomials):
# Make a multiplier polynomial for a domain polynomial of a constraint.
#
@@ -123,11 +167,7 @@ class PutinarPSatz(Canonicalization):
# :math:`p` is the domain polynomial and :math:`c` is the contraint
# polynomial.
- # FIXME: create an extension poly_degree and opt_degree to get
- # the maximul degree of the polynomial and the degree of the
- # optimization variables respectively.
- constr_deg = constr.expression.eval({v: 1. for v in prob.variables}).degree()
- domain_deg = domain_poly.eval({v: 1. for v in prob.variables}).degree()
+ domain_deg = domain_poly.linear_in(x).degree().max()
# Degree of multiplier needs to be an integer
d = constr_deg - domain_deg
@@ -140,19 +180,16 @@ class PutinarPSatz(Canonicalization):
if d.read(state).scalar().constant() % 2 != 0:
d += 1
- x = poly.v_stack((1,) + tuple(init_variable_expr(v, state.get_shape(v))
- for v in prob.polynomial_variables))
-
# FIXME: need to check that there is not a \gamma_i,j already!
# TODO: deterministically generate unique names
# TODO: better documentation
# Generate monomials of up to degree d and take only monomials
# that are in half of the newton polytope
- monomials = x.combinations(poly.arange(d + 1)) # .half_newton_polytope(x)
- gamma = opt_variable_from_name(rf"\gamma_{i},{j}", shape=monomials.shape)
+ monomials = x.combinations(poly.arange(d + 1)).half_newton_polytope(x)
+ coeffs = opt_variable_from_name(rf"\gamma_{i},{j}", shape=monomials.shape)
- multiplier = gamma.T @ monomials
+ multiplier = coeffs.T @ monomials
# Subtract multiplier from expression and impose that it is also SOS
new_constr -= multiplier * domain_poly
@@ -211,11 +248,18 @@ class LogDet(Canonicalization):
"""
problem: SOSProblem
+ @property
+ @override
+ def cost(self) -> Expression:
+ return self(self.problem).cost
+
+ @property
@override
- def __call__(self, problem : SOSProblem | None = None) -> SOSProblem:
- if problem is None:
- problem = self.problem
+ def constraints(self) -> Expression:
+ return self(self.problem).constraints
+ @override
+ def __call__(self, problem : SOSProblem) -> SOSProblem:
A = problem.cost
# FIXME: should check for name clashes in state object
@@ -236,7 +280,6 @@ class LogDet(Canonicalization):
return replace(problem, cost=new_cost, constraints=new_constraints)
-
@override
def apply(self, state: ExpressionState) -> tuple[ExpressionState, InternalSOSProblem]:
- return self().apply(state)
+ return self(self.problem).apply(state)
diff --git a/sumofsquares/problems.py b/sumofsquares/problems.py
index a646d0e..9990264 100644
--- a/sumofsquares/problems.py
+++ b/sumofsquares/problems.py
@@ -179,31 +179,31 @@ class SOSProblem(Problem):
variable_indices: set[VariableIndex] = set()
constraints: list[Constraint] = []
+ # Collect all variables that are involved in the problem
state, cost = self.cost.apply(state)
- variable_indices.update(cost.variables())
-
- # Compute the polymatrix of each constraint expression. Even though the
- # result may not be used, this is necessary to account for the case of
- # variables that are only present in the constraints, which the state
- # object may not contain yet.
+ variable_indices |= cost.variables()
for c in self.constraints:
state, pm = c.expression.apply(state)
- variable_indices.update(pm.variables())
+ variable_indices |= pm.variables()
- variables = set(state.get_symbol_from_variable_index(v)
- for v in variable_indices)
+ # Get symbols of the variables
+ all_symbols = set(state.get_symbol_from_variable_index(v)
+ for v in variable_indices)
- # Collect optimization variables
+ # Separate between symbols of optimization variables and those of polynomial variables
def is_opt(v):
return isinstance(v, OptSymbol)
- polynomial_variables, variables = partition(is_opt, variables)
- polynomial_variables = tuple(polynomial_variables) # because it is a generator
+ polynomial_symbols, symbols = partition(is_opt, all_symbols)
+
+ # evaluate generators
+ symbols = tuple(symbols)
+ polynomial_symbols = tuple(polynomial_symbols)
x = poly.v_stack((1,) + tuple(
init_variable_expr(v, state.get_shape(v))
- for v in polynomial_variables))
+ for v in polynomial_symbols))
for i, c in enumerate(self.constraints):
if isinstance(c, EqualToZero):
@@ -287,7 +287,7 @@ class SOSProblem(Problem):
# raise NotImplementedError(f"Cannot process constraint of type {ctype} (yet).")
return state, InternalSOSProblem(cost, tuple(pm_constraints),
- tuple(variables), polynomial_variables,
+ symbols, polynomial_symbols,
self.solver)
@@ -305,8 +305,8 @@ class InternalSOSProblem(Problem):
"""
cost: PolyMatrixMixin
constraints: Sequence[Constraint[PolyMatrixMixin]]
- variables: Sequence[OptSymbol]
- polynomial_variables: Sequence[Symbol]
+ symbols: Sequence[OptSymbol]
+ polynomial_symbols: Sequence[Symbol]
solver: Solver
def to_conic_problem(self, state: ExpressionState, verbose: bool = False) -> ConicProblem:
@@ -335,7 +335,7 @@ class InternalSOSProblem(Problem):
# indices of variables in the optimization problem, sorted
variable_indices = sum(sorted(tuple(state.get_indices_as_variable_index(v))
- for v in self.variables), ())
+ for v in self.symbols), ())
# cost linear term
cost_coeffs = dict(cost.affine_coefficients_by_degrees(variable_indices))
@@ -374,6 +374,11 @@ class InternalSOSProblem(Problem):
# Get constant and linear terms
constant = constr.affine_coefficient(MonomialIndex.constant())
linear = tuple(constr.affine_coefficient(v) for v in variable_indices)
+
+ # constraint has disappeared
+ if not (np.any(constant) or np.any(linear)):
+ # print("Constraint disappeared!")
+ continue
if isinstance(c, EqualToZero):
dims["z"].append(nrows)
@@ -420,7 +425,7 @@ class InternalSOSProblem(Problem):
dims=dims, is_qp=is_qp,
solver=self.solver,
variables={v : state.get_shape(v)
- for v in self.variables
+ for v in self.symbols
})