summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--sumofsquares/canon.py15
-rw-r--r--sumofsquares/solver/cvxopt.py1
2 files changed, 8 insertions, 8 deletions
diff --git a/sumofsquares/canon.py b/sumofsquares/canon.py
index 02c9266..8c4b541 100644
--- a/sumofsquares/canon.py
+++ b/sumofsquares/canon.py
@@ -114,7 +114,7 @@ class PutinarPSatz(Canonicalization):
new_constraints: list[Constraint] = list(constraints)
for i, constr in enumerate(to_process):
new_constr = constr.expression
- for domain_poly in constr.domain.polynomials:
+ for j, domain_poly in enumerate(constr.domain.polynomials):
# Make a multiplier polynomial for a domain polynomial of a constraint.
#
# Since Putinar's PSatz does not explicity tell us the order of the
@@ -140,20 +140,19 @@ class PutinarPSatz(Canonicalization):
if d.read(state).scalar().constant() % 2 != 0:
d += 1
- x = poly.v_stack((1,) + tuple(
- init_variable_expr(v, state.get_shape(v))
- for v in prob.polynomial_variables))
+ x = poly.v_stack((1,) + tuple(init_variable_expr(v, state.get_shape(v))
+ for v in prob.polynomial_variables))
- # FIXME: need to check that there is not a \gamma_{i} already!
+ # FIXME: need to check that there is not a \gamma_i,j already!
# TODO: deterministically generate unique names
# TODO: better documentation
# Generate monomials of up to degree d and take only monomials
# that are in half of the newton polytope
- monomials = x.combinations(poly.arange(d + 1)).half_newton_polytope(x)
- c = opt_variable_from_name(rf"\gamma_{i}", shape=monomials.shape)
+ monomials = x.combinations(poly.arange(d + 1)) # .half_newton_polytope(x)
+ gamma = opt_variable_from_name(rf"\gamma_{i},{j}", shape=monomials.shape)
- multiplier = c.T @ monomials
+ multiplier = gamma.T @ monomials
# Subtract multiplier from expression and impose that it is also SOS
new_constr -= multiplier * domain_poly
diff --git a/sumofsquares/solver/cvxopt.py b/sumofsquares/solver/cvxopt.py
index 0692787..cf0dc4e 100644
--- a/sumofsquares/solver/cvxopt.py
+++ b/sumofsquares/solver/cvxopt.py
@@ -135,6 +135,7 @@ def solve_cone(prob: ConicProblem, verbose: bool = False,
info = cvxopt.solvers.coneqp(P=P, q=q, G=G, h=h, A=A, b=b,
dims=dims, *args, **kwargs)
else:
+ assert P is None, "Solving QP with LP solver! Something has gone very wrong"
info = cvxopt.solvers.conelp(c=q, G=G, h=h, A=A, b=b,
*args, **kwargs)