diff options
Diffstat (limited to '')
-rw-r--r-- | sumofsquares/cvxopt.py | 87 |
1 files changed, 63 insertions, 24 deletions
diff --git a/sumofsquares/cvxopt.py b/sumofsquares/cvxopt.py index cc7d555..a703104 100644 --- a/sumofsquares/cvxopt.py +++ b/sumofsquares/cvxopt.py @@ -32,17 +32,43 @@ def solve_cone( state, variables, cost, - s_inequality, - # q_inequality = tuple(), + s_inequality = tuple(), + q_inequality = tuple(), l_inequality = tuple(), - previous_result=None, + # previous_result=None, print_info=False, print_matrix=False, ): - state, matrix_repr = polymatrix.to_matrix_repr( - (cost,) + l_inequality + s_inequality, - polymatrix.v_stack(variables), - ).apply(state) + + try: + state, matrix_repr = polymatrix.to_matrix_repr( + (cost,) + l_inequality + q_inequality + s_inequality, + polymatrix.v_stack(variables), + ).apply(state) + except: + state, matrix_repr = polymatrix.to_matrix_repr( + (cost,), + polymatrix.v_stack(variables), + ).apply(state) + + if len(l_inequality): + state, matrix_repr = polymatrix.to_matrix_repr( + l_inequality, + polymatrix.v_stack(variables), + ).apply(state) + + if len(q_inequality): + state, matrix_repr = polymatrix.to_matrix_repr( + q_inequality, + polymatrix.v_stack(variables), + ).apply(state) + + if len(s_inequality): + state, matrix_repr = polymatrix.to_matrix_repr( + s_inequality, + polymatrix.v_stack(variables), + ).apply(state) + # maximum degree of cost function must be 2 max_degree_cost = matrix_repr.data[0].get_max_degree() @@ -58,9 +84,12 @@ def solve_cone( q = cost[1] / 2 Gl = matrix_repr.data[1:1+len(l_inequality)] - l = sum(G[0].shape[0] for G in Gl) + dim_l = sum(G[0].shape[0] for G in Gl) + + Gq = matrix_repr.data[1+len(l_inequality):1+len(l_inequality)+len(q_inequality)] + dim_q = list(G[0].shape[0] for G in Gq) - Gs = matrix_repr.data[1+len(l_inequality):] + Gs = matrix_repr.data[1+len(l_inequality)+len(q_inequality):] def gen_square_matrix_dim(): for Gs_raw in Gs: @@ -70,52 +99,62 @@ def solve_cone( yield int(dim) - s = list(gen_square_matrix_dim()) + dim_s = list(gen_square_matrix_dim()) G = np.vstack(tuple(-v[1] for v in matrix_repr.data[1:])) h = np.vstack(tuple(v[0] for v in matrix_repr.data[1:])) if print_info: print(f'number of variables: {G.shape[1]}') - print(f'PSD matrix dimensions: {s}') + print(f'{dim_l=}, {dim_q=}, {dim_s=}') if print_matrix: print(f'cost={q}') print(f'G={G}') print(f'h={h}') - if previous_result is None: - primalstart = None + # if previous_result is None: + # primalstart = None - else: - primalstart = { - 'x': cvxopt.matrix(previous_result.x), - 'y': cvxopt.matrix(previous_result.y), - 's': cvxopt.matrix(previous_result.s), - 'z': cvxopt.matrix(previous_result.z), - } + # else: + # primalstart = { + # 'x': cvxopt.matrix(previous_result.x), + # 'y': cvxopt.matrix(previous_result.y), + # 's': cvxopt.matrix(previous_result.s), + # 'z': cvxopt.matrix(previous_result.z), + # } if max_degree_cost == 1: return_val = cvxopt.solvers.conelp( c=cvxopt.matrix(q.reshape(-1, 1)), G=cvxopt.matrix(G), h=cvxopt.matrix(h), - dims={'l': 0, 'q': [], 's': s}, - primalstart=primalstart, + dims={'l': dim_l, 'q': dim_q, 's': dim_s}, + # primalstart=primalstart, ) else: # cost[2] is a 1 x n*n vector nP = int(np.sqrt(cost[2].shape[1])) P = cost[2].reshape(nP, nP).toarray() + + if print_matrix: + print(f'{P=}') + + if print_matrix: + print(f'{dim_l=}, {dim_q=}, {dim_s=}') + print(f'{P=}') + print(f'{q=}') + print(f'{G=}') + print(f'{h=}') return_val = cvxopt.solvers.coneqp( P=cvxopt.matrix(P), q=cvxopt.matrix(q.reshape(-1, 1)), G=cvxopt.matrix(G), h=cvxopt.matrix(h), - dims={'l': l, 'q': [], 's': s,}, - initvals=primalstart, + dims={'l': dim_l, 'q': dim_q, 's': dim_s}, + # initvals=primalstart, ) x = np.array(return_val['x']).reshape(-1) |