summaryrefslogtreecommitdiffstats
path: root/uav.m
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-05-24 11:06:18 +0200
committerNao Pross <np@0hm.ch>2024-05-24 11:06:18 +0200
commit1c844e165055fca5253ed885af8c036619e9fef0 (patch)
treeba53c8b6560b8189a52131fe69a9616f4c8e0b53 /uav.m
parentUpdate DK-iteration and clean up (diff)
downloaduav-1c844e165055fca5253ed885af8c036619e9fef0.tar.gz
uav-1c844e165055fca5253ed885af8c036619e9fef0.zip
Add more checks, update DK iteration
Diffstat (limited to 'uav.m')
-rw-r--r--uav.m214
1 files changed, 171 insertions, 43 deletions
diff --git a/uav.m b/uav.m
index 059c944..3a0da71 100644
--- a/uav.m
+++ b/uav.m
@@ -9,7 +9,7 @@
clear; clc; close all; s = tf('s');
do_plots = true; % runs faster without
-do_hinf = true; % midterm
+do_hinf = false; % midterm
do_musyn = true; % endterm
fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
@@ -37,7 +37,8 @@ params = uav_params();
% Define performance requirements
fprintf('Generating performance requirements...\n')
-perf = uav_performance_musyn(params, do_plots);
+perf_hinf = uav_performance_hinf(params, do_plots);
+perf_musyn = uav_performance_musyn(params, do_plots);
%% ------------------------------------------------------------------------
% Define stability requirements
@@ -49,7 +50,7 @@ uncert = uav_uncertainty(params, do_plots);
% Create UAV model
fprintf('Generating system model...\n');
-model = uav_model(params, perf, uncert);
+model = uav_model(params, perf_musyn, uncert);
%% ------------------------------------------------------------------------
% Perform H-infinity design
@@ -71,7 +72,21 @@ if do_hinf
'AutoScale', 'off', 'RelTol', 1e-3);
[K_inf, ~, gamma, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
fprintf(' - H-infinity synthesis gamma: %g\n', gamma);
- ctrl.hinf = struct('Name', '$\mathcal{H}_{\infty}$', 'K', K_inf);
+
+ index = struct( ...
+ 'Ix', 1, 'Iy', 2, 'Iz', 3, ...
+ 'IPdot', (4:6)', ...
+ 'Iroll', 7, 'Ipitch', 8, 'Iyaw', 9, ...
+ 'ITheta', (10:12)', ...
+ 'Ialpha', (1:4)', ...
+ 'Iomega', 5 ...
+ );
+
+ ctrl.hinf = struct( ...
+ 'Name', '$\mathcal{H}_{\infty}$', ...
+ 'K', K_inf, ...
+ 'index', index ...
+ );
if gamma >= 1
error('Failed to syntesize controller (closed loop is unstable).')
@@ -80,11 +95,39 @@ if do_hinf
%% ------------------------------------------------------------------------
% Measure Performance of H-infinity design
- fprintf(' - Simulating closed loop...\n');
+ if do_plots
+ fprintf(' - Plotting resulting controller...\n');
+
+ % Plot transfer functions
+ figure; hold on;
+ bode(ctrl.hinf.K(index.Ialpha(1), index.Ix));
+ bode(ctrl.hinf.K(index.Ialpha(2), index.Ix));
+
+ bode(ctrl.hinf.K(index.Ialpha(1), index.Iy));
+ bode(ctrl.hinf.K(index.Ialpha(2), index.Iy));
+
+ bode(ctrl.hinf.K(index.Iomega, index.Ix));
+ bode(ctrl.hinf.K(index.Iomega, index.Iy));
+ bode(ctrl.hinf.K(index.Iomega, index.Iz));
+
+ title(sprintf('\\bfseries %s Controller', ctrl.hinf.Name), ...
+ 'interpreter', 'latex');
+ legend('$x \rightarrow \alpha_1$', ...
+ '$x \rightarrow \alpha_2$', ...
+ '$y \rightarrow \alpha_1$', ...
+ '$y \rightarrow \alpha_2$', ...
+ '$x \rightarrow \omega$', ...
+ '$y \rightarrow \omega$', ...
+ '$z \rightarrow \omega$', ...
+ 'interpreter', 'latex');
+ grid on;
+ end
+
+ fprintf('Simulating closed loop...\n');
- T = 60;
- nsamples = 500;
- do_noise = true;
+ T = 40;
+ nsamples = 800;
+ do_noise = false;
simout = uav_sim_step(params, model, ctrl.hinf, nsamples, T, do_plots, do_noise);
fprintf(' - Writing simulation results...\n');
@@ -116,10 +159,10 @@ if do_musyn
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
- 'AutoScale', 'on', 'RelTol', 1e-3);
+ 'AutoScale', 'on', 'RelTol', 1e-2);
% Frequency raster resolution to fit D scales
- nsamples = 600;
+ nsamples = 300;
omega_max = 3;
omega_min = -3;
@@ -132,12 +175,28 @@ if do_musyn
% Maximum number of D-K iterations
niters = 5;
- fprintf(' - Will do at most %d iterations.\n', niters);
+ fprintf(' - Will do (max) %d iterations.\n', niters);
% Maximum degree of D-scales and error
- d_scales_max_degree = 3;
- d_scales_max_err_p = .4; % in percentage
- d_scales_improvement_p = .15; % in percentage
+ d_scales_max_degree = 10;
+ d_scales_max_err_p = .2; % in percentage
+ d_scales_improvement_p = .1; % in percentage, avoid diminishing returns
+
+ % hand tuned degrees, inf means will pick automatically best fit
+ % according to parameters given above
+ d_scales_degrees = {
+ 0, 0, inf, inf, inf; % alpha
+ 1, inf, inf, inf, inf; % omega
+ 2, inf, inf, inf, inf; % state
+ 0, 0, inf, inf, inf;
+ };
+
+ if size(d_scales_degrees, 2) < niters
+ error('');
+ end
+
+ scaled_plant_reduce_ord = 100;
+ scaled_plant_reduce_maxerr = 1e-3;
% for plotting later
mu_plot_legend = {};
@@ -148,9 +207,31 @@ if do_musyn
fprintf(' * Running D-K iteration %d / %d...\n', it, niters);
itstart = tic();
- % Find controller using H-infinity
+ % Scale plant and reduce order, fitting the D-scales adds a lot of near
+ % zero modes that cause the plant to become very numerically ill
+ % conditioned. Since the D-scales are an approximation anyways (i.e.
+ % there is not mathematical proof for the fitting step), we limit the
+ % order of the scaled system to prevent poor scaling issues.
P_scaled = minreal(D_left * P * inv(D_right), [], false);
[P_scaled, ~] = prescale(P_scaled, omega_range);
+ n = size(P_scaled.A, 1);
+
+ if n > scaled_plant_reduce_ord
+ R = reducespec(P_scaled, 'balanced'); % or ncf
+ R.Options.FreqIntervals = [omega_range{1}, omega_range{2}];
+ R.Options.Goal = 'absolute'; % better hinf norm
+ if do_plots
+ figure(102);
+ view(R);
+ drawnow;
+ end
+ P_scaled = getrom(R, MaxError=scaled_plant_reduce_maxerr);
+
+ fprintf(' Scaled plant was reduced from order %d to %d\n', ...
+ n, size(P_scaled.A, 1))
+ end
+
+ % Find controller using H-infinity
[K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, hinfopt);
fprintf(' H-infinity synthesis gamma: %g\n', gamma);
@@ -241,36 +322,55 @@ if do_musyn
for j = 1:4
% for each in left and right
fprintf(' %s', D_names{j});
- best_fit_deg = inf;
- best_fit_err = inf;
- for deg = 0:d_scales_max_degree
- % Fit D-scale
- D_fit = fitmagfrd(D_frd{j}, deg);
- % D_fit = fitfrd(genphase(D_frd{j}), deg);
-
- % Check if it is a good fit
+
+ % tuned by hand?
+ if d_scales_degrees{j, it} < inf
+ % D_fit = fitmagfrd(D_frd{j}, d_scales_degrees{j, it});
+ D_fit = fitfrd(genphase(D_frd{j}), d_scales_degrees{j, it});
+
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
-
- if fit_err < best_fit_err
- % Choose higher degree only if we improve by at least a specified
- % percentage over the previous best fit (or we are at the first
- % iteration). This is a heuristic to avoid adding too many states
- % to the controller as it depends on the order of the D-scales.
- if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
- best_fit_deg = deg;
- best_fit_err = fit_err;
- D_fitted{j} = D_fit;
+ D_fitted{j} = D_fit;
+
+ fprintf(' tuned degree %d, error %g (%g %%)\n', ...
+ d_scales_degrees{j, it}, fit_err, ...
+ 100 * fit_err / D_max_sv{j});
+
+ else
+ % find best degree
+ best_fit_deg = inf;
+ best_fit_err = inf;
+
+ for deg = 0:d_scales_max_degree
+ % Fit D-scale
+ % D_fit = fitmagfrd(D_frd{j}, deg);
+ D_fit = fitfrd(genphase(D_frd{j}), deg);
+
+ % Check if it is a good fit
+ max_sv = max(max(sigma(D_fit, omega)));
+ fit_err = abs(D_max_sv{j} - max_sv);
+
+ if fit_err < best_fit_err
+ % Choose higher degree only if we improve by at least a
+ % specified percentage over the previous best fit (or we are
+ % at the first iteration). This is a heuristic to prevent
+ % adding too many states to the controller as it depends on
+ % the order of the D-scales.
+ if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
+ best_fit_deg = deg;
+ best_fit_err = fit_err;
+ D_fitted{j} = D_fit;
+ end
end
+
+ if (fit_err / D_max_sv{j} < d_scales_max_err_p)
+ break;
+ end
+ fprintf('.');
end
-
- if (fit_err / D_max_sv{j} < d_scales_max_err_p)
- break;
- end
- fprintf('.');
+ fprintf(' degree %d, error %g (%g %%)\n', ...
+ best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
- fprintf(' degree %d, error %g (%g %%)\n', ...
- best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
% Construct full matrices
@@ -340,7 +440,7 @@ if do_musyn
fprintf(' - D-K iteration took %.1f seconds\n', dkend);
if mu_rp > 1 && mu_rs > 1
- error(' - Failed to synthesize robust controller that meets the desired performance.\n');
+ error(' - Failed to synthesize robust controller that meets the desired performance.');
end
%% Fit worst-case perturbation
@@ -364,11 +464,39 @@ if do_musyn
%% ------------------------------------------------------------------------
% Measure Performance of mu synthesis design
+ if do_plots
+ fprintf(' - Plotting resulting controller...\n');
+
+ % Plot transfer functions
+ figure; hold on;
+ bode(ctrl.musyn.K(index.Ialpha(1), index.Ix));
+ bode(ctrl.musyn.K(index.Ialpha(2), index.Ix));
+
+ bode(ctrl.musyn.K(index.Ialpha(1), index.Iy));
+ bode(ctrl.musyn.K(index.Ialpha(2), index.Iy));
+
+ bode(ctrl.musyn.K(index.Iomega, index.Ix));
+ bode(ctrl.musyn.K(index.Iomega, index.Iy));
+ bode(ctrl.musyn.K(index.Iomega, index.Iz));
+
+ title(sprintf('\\bfseries %s Controller', ctrl.musyn.Name), ...
+ 'interpreter', 'latex');
+ legend('$x \rightarrow \alpha_1$', ...
+ '$x \rightarrow \alpha_2$', ...
+ '$y \rightarrow \alpha_1$', ...
+ '$y \rightarrow \alpha_2$', ...
+ '$x \rightarrow \omega$', ...
+ '$y \rightarrow \omega$', ...
+ '$z \rightarrow \omega$', ...
+ 'interpreter', 'latex');
+ grid on;
+ end
+
fprintf('Simulating nominal closed loop...\n');
- T = 60;
+ T = 40;
nsamples = 5000;
- do_noise = true;
+ do_noise = false;
simout = uav_sim_step(params, model, ctrl.musyn, nsamples, T, do_plots, do_noise);