From 6440d952b7a3332423481f27175c2fd876b7e3ae Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 16 May 2024 14:59:06 +0200 Subject: Delete old LQR code --- uav_ctrl_lqr.m | 39 ---------- uav_sim_step_lqr.m | 211 ----------------------------------------------------- 2 files changed, 250 deletions(-) delete mode 100644 uav_ctrl_lqr.m delete mode 100644 uav_sim_step_lqr.m diff --git a/uav_ctrl_lqr.m b/uav_ctrl_lqr.m deleted file mode 100644 index 8063c64..0000000 --- a/uav_ctrl_lqr.m +++ /dev/null @@ -1,39 +0,0 @@ -% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich -% -% Design a nominal controller for UAV. - -function [ctrl_lqr] = uav_ctrl_lqr(params, model) - -% ------------------------------------------------------------------------ -% Design a Kalman filter for state estimation - -G = model.linear.StateSpace -[L, P, E] = lqe(G.A, G. - -% ------------------------------------------------------------------------ -% Design a nominal LQR controller - -% Define penalties according to following priorities - -q_pos = 1; % penalty on position -q_vel = 10; % penalty on linear velocity -q_ang = 10; % high penalty on angles -q_rate = 10; % very high penalty on angular velocities - -r_ang = 1; % flap movement is cheap -r_thrust = 10; % thrust is more expensive on the battery - -% LQR design matrices -Q = kron(diag([q_pos, q_vel, q_ang, q_rate]), eye(3)); -R = diag([r_ang, r_ang, r_ang, r_ang, r_thrust]); - -% Compute controller using output lqr -[K, S, poles] = lqry(model.linear.StateSpace, Q, R); - -% ------------------------------------------------------------------------ -% Save controller - -ctrl_lqr = struct('Name', 'LQR', 'K', K); - -end -% vim: ts=2 sw=2 et: diff --git a/uav_sim_step_lqr.m b/uav_sim_step_lqr.m deleted file mode 100644 index e672d35..0000000 --- a/uav_sim_step_lqr.m +++ /dev/null @@ -1,211 +0,0 @@ -% Simulate a step responses of ducted-fan VTOL micro-UAV. -% -% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich -% This work is distributed under a permissive license, see LICENSE.txt - -function [simout] = uav_sim_step_lqr(params, model, ctrl, nsamp, do_plots) - -% TODO: Close loop - -% Create step inputs (normalized) -noise = zeros(7, nsamp); % no noise -ref_step = ones(1, nsamp); % 1d step function - -in_step_x = [ noise; ref_step; zeros(2, nsamp) ]; -in_step_y = [ noise; zeros(1, nsamp); ref_step; zeros(1, nsamp) ]; -in_step_z = [ noise; zeros(2, nsamp); ref_step ]; - -% Simulation time -n_settle_times = 10; -T_final_horiz = n_settle_times * params.performance.HorizontalSettleTime; -T_final_vert = n_settle_times * params.performance.VerticalSettleTime; - -t_xy = linspace(0, T_final_horiz, nsamp); -t_z = linspace(0, T_final_vert, nsamp); - -% Simulate step responses -out_step_x = lsim(P_nom_clp, in_step_x, t_xy); -out_step_y = lsim(P_nom_clp, in_step_y, t_xy); -out_step_z = lsim(P_nom_clp, in_step_z, t_z); - -if do_plots - % Conversion factors - to_deg = 180 / pi; % radians to degrees - to_rpm = pi / 30; % rad / s to RPM - - % Figure for flaps and Euler angles - figure; - sgtitle(sprintf(... - '\\bfseries Step Response of Flap and Euler Angles (%s)', ... - ctrl.Name), 'Interpreter', 'latex'); - - % Plot limits - ref_value = params.performance.ReferencePosMaxDistance; - alpha_max_deg = params.actuators.ServoAbsMaxAngle * to_deg; - euler_lim_deg = 1.5; % params.performance.AngleMaxPitchRoll * to_deg; - omega_max_rpm = (params.actuators.PropellerMaxAngularVelocity ... - - params.linearization.Inputs(5)) * to_rpm; - omega_min_rpm = -params.linearization.Inputs(5) * to_rpm; - - % Plot step response from x to alpha - subplot(2, 3, 1); - hold on; - plot(t_xy, out_step_x(:, Ialpha(1)) * to_deg); - plot(t_xy, out_step_x(:, Ialpha(2)) * to_deg); - plot(t_xy, out_step_x(:, Ialpha(3)) * to_deg); - plot(t_xy, out_step_x(:, Ialpha(4)) * to_deg); - plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--'); - plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--'); - grid on; - xlim([0, T_final_horiz]); - ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]); - title('Horizontal $x$ to Flaps', 'Interpreter', 'latex'); - ylabel('Flap Angle (degrees)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ... - 'Interpreter', 'latex'); - - % Plot step response from y to alpha - subplot(2, 3, 2); hold on; - plot(t_xy, out_step_y(:, Ialpha(1)) * to_deg); - plot(t_xy, out_step_y(:, Ialpha(2)) * to_deg); - plot(t_xy, out_step_y(:, Ialpha(3)) * to_deg); - plot(t_xy, out_step_y(:, Ialpha(4)) * to_deg); - plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--'); - plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--'); - grid on; - xlim([0, T_final_horiz]); - ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]); - title('Horizontal $y$ to Flaps', 'Interpreter', 'latex'); - ylabel('Flap Angle (degrees)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ... - 'Interpreter', 'latex'); - - % Plot step response from z to alpha - subplot(2, 3, 3); hold on; - plot(t_z, out_step_z(:, Ialpha(1)) * to_deg); - plot(t_z, out_step_z(:, Ialpha(2)) * to_deg); - plot(t_z, out_step_z(:, Ialpha(3)) * to_deg); - plot(t_z, out_step_z(:, Ialpha(4)) * to_deg); - plot([0, T_final_vert], [1, 1] * alpha_max_deg, 'r--'); - plot([0, T_final_vert], [-1, -1] * alpha_max_deg, 'r--'); - grid on; - xlim([0, T_final_vert]); - ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]); - title('Vertical $z$ to Flaps', 'Interpreter', 'latex'); - ylabel('Flap Angle (degrees)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ... - 'Interpreter', 'latex'); - - % Plot step response from x to Theta - subplot(2, 3, 4); hold on; - plot(t_xy, out_step_x(:, ITheta(1)) * to_deg); - plot(t_xy, out_step_x(:, ITheta(2)) * to_deg); - plot(t_xy, out_step_x(:, ITheta(3)) * to_deg); - grid on; - xlim([0, T_final_horiz]); - ylim([-euler_lim_deg, euler_lim_deg]); - title('Horizontal $x$ to Euler Angles', 'Interpreter', 'latex'); - ylabel('Euler Angle (degrees)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ... - 'Interpreter', 'latex'); - - % Plot step response from y to Theta - subplot(2, 3, 5); hold on; - plot(t_xy, out_step_y(:, ITheta(1)) * to_deg); - plot(t_xy, out_step_y(:, ITheta(2)) * to_deg); - plot(t_xy, out_step_y(:, ITheta(3)) * to_deg); - grid on; - xlim([0, T_final_horiz]); - ylim([-euler_lim_deg, euler_lim_deg]); - title('Horizontal $y$ to Euler Angles', 'Interpreter', 'latex'); - ylabel('Euler Angle (degrees)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ... - 'Interpreter', 'latex'); - - % Plot step response from z to Theta - subplot(2, 3, 6); hold on; - plot(t_z, out_step_z(:, ITheta(1)) * to_deg); - plot(t_z, out_step_z(:, ITheta(2)) * to_deg); - plot(t_z, out_step_z(:, ITheta(3)) * to_deg); - grid on; - xlim([0, T_final_vert]); - ylim([-euler_lim_deg, euler_lim_deg]); - title('Vertical $z$ to Euler Angles', 'Interpreter', 'latex'); - ylabel('Euler Angle (degrees)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ... - 'Interpreter', 'latex'); - - % Plot step response from z to omega - figure; - sgtitle(sprintf(... - '\\bfseries Step Response to Propeller (%s)', ... - ctrl.Name), 'Interpreter', 'latex'); - - hold on; - step(P_nom_clp(Iomega, Ir(3)) * to_rpm, T_final_vert); - plot([0, T_final_vert], [1, 1] * omega_min_rpm, 'r--'); - plot([0, T_final_vert], [1, 1] * omega_max_rpm, 'r--'); - grid on; - ylim([omega_min_rpm - 1, omega_max_rpm + 1]); - title('Vertical $z$ to Thruster $\omega$', 'Interpreter', 'latex'); - ylabel('Angular Velocity (RPM)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\omega(t)$', 'Interpreter', 'latex'); - - % Figure for position and velocity - figure; - sgtitle(sprintf(... - '\\bfseries Step Response of Position and Speed (%s)', ... - ctrl.Name), 'Interpreter', 'latex'); - - % Plot step response from horizontal reference to horizontal position - subplot(2, 2, 1); hold on; - plot(t_xy, out_step_x(:, IP(1))); - plot(t_xy, out_step_y(:, IP(2))); - % plot([0, T_final_horiz], [1, 1] * ref_value, 'r:'); - % plot(t_xy, out_step_xydes, 'r--'); - grid on; - title('Horizontal Position Error', 'Interpreter', 'latex'); - ylabel('Error (meters)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$x(t)$', '$y(t)$', 'Interpreter', 'latex'); - - % Plot step response horizontal reference to horizontal speed - subplot(2, 2, 2); hold on; - plot(t_xy, out_step_x(:, IPdot(1))); - plot(t_xy, out_step_y(:, IPdot(2))); - grid on; - title('Horizontal Velocity', 'Interpreter', 'latex'); - ylabel('Velocity (m / s)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\dot{x}(t)$', '$\dot{y}(t)$', 'Interpreter', 'latex'); - - % Plot step response from vertical reference to vertical position - subplot(2, 2, 3); hold on; - plot(t_z, out_step_z(:, IP(3))); - % plot([0, T_final_vert], [1, 1] * ref_value, 'r:'); - % plot(t_z, out_step_zdes, 'r--'); - grid on; - title('Vertical Position Error', 'Interpreter', 'latex'); - ylabel('Error (meters)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$z(t)$', 'Interpreter', 'latex'); - - % Plot step response vertical reference to vertical speed - subplot(2, 2, 4); hold on; - plot(t_z, out_step_z(:, IPdot(3))); - grid on; - title('Vertical Velocity', 'Interpreter', 'latex'); - ylabel('Velocity (m / s)', 'Interpreter', 'latex'); - xlabel('Time (seconds)', 'Interpreter', 'latex'); - legend('$\dot{z}(t)$', 'Interpreter', 'latex'); -end - -end -% vim:ts=2 sw=2 et: -- cgit v1.2.1