% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich % % Compute model for UAV for given set of parameters. function [model] = uav_model(params) % ------------------------------------------------------------------------ % Symbolic variables % Constant scalar physical quantities and dimensions syms m g rho a b d S k_T c_d c_0 c_l J_r real; syms J_1 J_2 J_3 real; J = diag([J_1, J_2, J_3]); % Scalar position, rotation and velocities syms x y z xdot ydot zdot real; syms phi theta p q r real; psi = sym('psi', 'real'); % shadow MATLAB's psi() function % Vector position, rotation and velocities P = [x; y; z]; % position vector (inertial frame) Pdot = [xdot; ydot; zdot]; % velocity vector (intertial frame) Theta = [phi; theta; psi]; % attitude vector: [roll pitch yaw] (body frame) Omega = [p; q; r]; % angular rates (body frame) % Inputs: flap angles and ducted fan speed syms alpha_1 alpha_2 alpha_3 alpha_4 omega real; alpha = [alpha_1; alpha_2; alpha_3; alpha_4]; % Flap angles are measured relative to the body-frame z-axis and considered % positive / negative with respect to the roll / pitch axis to which they % are attached to. Reference table: % % angle attached axis lift force direction % when angle is positive % ------- ------------- ---------------------- % alpha_1 pos. x axis y direction % alpha_2 pos. y axis -x direction % alpha_3 neg. x axis y direction % alpha_4 neg. y axis -x direction % Rotation matrix to change between frames of reference: % multiplying by R moves from the inertial frame to the body frame % to go from body frame to inertial frame use R transpose (R is SO(3)) R = [ cos(theta) * cos(psi), cos(theta) * sin(psi), -sin(theta); (sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi)), ... (sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi)), ... sin(phi) * cos(theta); (cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi)), ... (cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi)), ... cos(phi) * cos(theta); ]; % Matrix to relate Euler angles to angular velocity in the body frame % i.e. dTheta/dt = U * Omega. To get the angular velocity in intertial % coordinates use (R * U). U = [ 1, sin(phi) * tan(theta), cos(phi) * tan(theta); 0, cos(phi), -sin(phi); 0, sin(phi) / cos(theta), cos(phi) / cos(theta); ]; % name of unit vectors in inertial frame uvec_i = [1; 0; 0]; uvec_j = [0; 1; 0]; uvec_k = [0; 0; 1]; % name of unit vectors in body frame uvec_x = [1; 0; 0]; uvec_y = [0; 1; 0]; uvec_z = [0; 0; 1]; % ------------------------------------------------------------------------ % Nonlinear system dynamics % Approximate air velocity field magnitude collinear to uvec_z nu = omega / pi * sqrt(k_T / (2 * a * rho)); % Aerodynamic force caused by flaps in body frame F_flap = @(alpha, uvec_n) rho * S * nu^2 / 2 * (... (c_d * alpha^2 + c_0) * uvec_z + c_l * alpha * uvec_n); F_1 = F_flap(alpha_1, uvec_y); F_2 = F_flap(alpha_2, uvec_x); F_3 = F_flap(alpha_3, uvec_y); F_4 = F_flap(alpha_4, uvec_x); % Torque caused by aerodynamics forces in body frame tau_1 = cross((d * uvec_z + a/3 * uvec_x), F_1); tau_2 = cross((d * uvec_z + a/3 * uvec_y), F_2); tau_3 = cross((d * uvec_z - a/3 * uvec_x), F_3); tau_4 = cross((d * uvec_z - a/3 * uvec_y), F_4); % Total force acting on the UAV in the body frame F = R * (m * g * uvec_k) ... % gravity - k_T * omega^2 * uvec_z ... % thrust + F_1 + F_2 + F_3 + F_4; % flaps % Total torque acting on the UAV in the body frame tau = J_r * omega * R * cross(uvec_k, Omega) + ... % gyroscopic procession tau_1 + tau_2 + tau_3 + tau_4; % flaps % State space form with state variable xi and input u % % The 12-dimensional state is given by % % - absolute position (inertial frame) in R^3 % - absolute velocity (intertial frame) in R^3 % - Euler angles (body frame) in SO(3) % - Angular rates (body frame) in R^3 % xi = [P; Pdot; Theta; Omega]; u = [alpha; omega]; % Right hand side of dynamics dxi = f(xi, u) f = [ Pdot; R' * F / m; % translational dynamics U * Omega; inv(J) * (tau - cross(Omega, J * Omega)); % rotational dynamics ]; % ------------------------------------------------------------------------ % Linearization at equilibrium % Equilibrium point xi_eq = [ params.linearization.Position; params.linearization.Velocity; params.linearization.Angles; params.linearization.AngularVelocities; ]; u_eq = params.linearization.Inputs; % Construct linearized state dynamics A = subs(jacobian(f, xi), [xi; u], [xi_eq; u_eq]); B = subs(jacobian(f, u), [xi; u], [xi_eq; u_eq]); % Insert values of parameters phy = struct(... 'g', params.physics.Gravity, ... 'rho', params.physics.AirDensity ... ); A = subs(A, phy); B = subs(B, phy); mech = struct(... 'm', params.mechanical.Mass, ... 'a', params.mechanical.DuctRadius, ... 'b', params.mechanical.DuctHeight, ... 'd', params.mechanical.FlapZDistance, ... 'J_1', params.mechanical.InertiaTensor(1, 1), ... 'J_2', params.mechanical.InertiaTensor(2, 2), ... 'J_3', params.mechanical.InertiaTensor(3, 3), ... 'J_r', params.mechanical.GyroscopicInertiaZ ... ); A = subs(A, mech); B = subs(B, mech); aero = struct(... 'k_T', params.aerodynamics.ThrustOmegaProp, ... 'S', params.aerodynamics.FlapArea, ... 'c_d', params.aerodynamics.DragCoefficients(1), ... 'c_0', params.aerodynamics.DragCoefficients(2), ... 'c_l', params.aerodynamics.LiftCoefficient ... ); A = subs(A, aero); B = subs(B, aero); % Evaluate constants like pi, etc and convert to double A = double(vpa(A)); B = double(vpa(B)); % The state is fully observed via hardware and refined with sensor fusion % algorithms C = eye(size(A)); D = zeros(12, 5); % Number of states, inputs and outputs [nx, nu] = size(B); [ny, ~] = size(C); % Create state space object sys = ss(A, B, C, D); % T = params.actuators.MeasurementDelay; % sys = ss(A, B, C, D, 'OutputDelay', T); % ------------------------------------------------------------------------ % Check properties of linearized model eigvals = eig(A); % Check system controllability / stabilizability Wc = ctrb(sys); if rank(Wc) < nx fprintf('Linearized system has %d uncontrollable states!\n', ... (nx - rank(Wc))); % Is the system at least stabilizable? unstabilizable = 0; for i = 1:nx if real(eigvals(i)) >= 0 % PBH test W = [(A - eigvals(i) * eye(size(A))), B]; if rank(W) < nx % fprintf(' State %d is not stabilizable\n', i); unstabilizable = unstabilizable + 1; end end end if unstabilizable > 0 fprintf('Linearized system has %d unstabilizable modes!\n', ... unstabilizable); else fprintf('However, it is stabilizable.\n'); end end % Check system observability / detectability Wo = obsv(sys); if rank(Wo) < nx fprintf('Linearized system has %d unobservable states!\n', ... (nx - rank(Wo))); % is the system at least detectable? undetectable = 0; for i = 1:nx if real(eigvals(i)) >= 0 % PBH test W = [C; (A - eigvals(i) * eye(size(A)))]; if rank(W) < nx undetectable = undetectable + 1; end end end if undetectable > 0 fprintf('Linearized system has %d undetectable modes!\n', ... undetectable); else fprintf('However, it is detectable.') end end % ------------------------------------------------------------------------ % Save model model = struct(); % Function to compute the rotation matrix model.FrameRot = @(pitch, roll, yaw) ... subs(R, [phi, theta, psi], [pitch, roll, yaw]); % Equations of non-linear model (algebraic) model.nonlinear = struct(... 'State', xi, ... 'Inputs', u, ... 'Dynamics', f ... ); % Linearized dynamics (numerical) model.linear = struct(... 'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs 'State', xi, 'Inputs', u, ... % state and input variables 'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized 'StateSpace', sys ... % state space object ); end % vim: ts=2 sw=2 et: