% Generate transfer functions for loop shaping performance requirements % from parameters specified in uav_params.m % % Copyright (C) 2024, Naoki Sean Pross, ETH Zürich % This work is distributed under a permissive license, see LICENSE.txt % % Arguments: % PARAMS Struct of design parameters and constants generated by uav_params % PLOT When set to 'true' it plots the inverse magnitude of the % performance transfer function % % Return value: % PERF Struct performance transfer functions function [perf] = uav_performance_hinf(params, do_plots) % Laplace variable s = tf('s'); % Bandwitdhs T_alpha = params.actuators.ServoSecondsTo60Deg; T_omega = 0.1; T_xy = 5; T_z = 10; % Inverse performance functions W_Palpha = make_weight(1/T_alpha, 10, 2); W_Pomega = make_weight(1/T_omega, 10, 2); W_Rxy = 1 / ((s * T_xy)^2 + 2 * T_xy * .8 * s + 1); W_Rz = 1 / (s * T_z + 1); W_Pxy = tf(5); W_Pz = tf(1); W_Pxydot = tf(.01); W_Pzdot = tf(.01); W_Pphitheta = .001 / (s * T_xy + 1); W_Ppsi = tf(.1); % Construct performance vector by combining xy and z W_ref = blkdiag(W_Rxy * eye(2), W_Rz); W_PP = blkdiag(W_Pxy * eye(2), W_Pz); W_PPdot = blkdiag(W_Pxydot * eye(2), W_Pzdot); W_PTheta = blkdiag(W_Pphitheta * eye(2), W_Ppsi); perf = struct(... 'FlapAngle', W_Palpha * eye(4), ... 'Thrust', W_Pomega, ... 'ReferenceFilter', W_ref, ... 'Position', W_PP, ... 'Velocity', W_PPdot, ... 'Angles', W_PTheta ... ); if do_plots % Bode plots of performance requirements figure; hold on; bodemag(W_Palpha); bodemag(W_Pomega); bodemag(W_Rxy); bodemag(W_Rz); bodemag(W_Pxy); bodemag(W_Pz); bodemag(W_Pxydot); bodemag(W_Pzdot); bodemag(W_Pphitheta); bodemag(W_Ppsi); grid on; legend('$W_{P,\alpha}$', '$W_{P,\omega}$', ... '$W_{R,xy}$', '$W_{R,z}$', ... '$W_{P,xy}$', '$W_{P,z}$', ... '$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ... '$W_{P,\phi\theta}$', '$W_{P,\psi}$', ... 'interpreter', 'latex', 'fontSize', 8); title('\bfseries Performance Requirements ($\mathcal{H}_\infty$ Weights)', ... 'interpreter', 'latex'); % Step response of position requirements figure; hold on; step(W_Pxy); step(W_Pz); step(W_Rxy); step(W_Rz); step(W_Pxydot); step(W_Pzdot); step(W_Palpha); step(W_Pomega); grid on; legend('$W_{P,xy}$', '$W_{P,z}$', ... '$W_{R,xy}$', '$W_{R,z}$', ... '$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ... '$W_{P,\alpha}$', '$W_{P,\omega}$', ... 'interpreter', 'latex', 'fontSize', 8); title('\bfseries Step responses of $\mathcal{H}_\infty$ Weights', ... 'interpreter', 'latex'); end end % Make a n-order performance weight function % % Arguments: % OMEGA Cutting frequency (-3dB) % A Magnitude at DC, i.e. |Wp(0)| % M Magnitude at infinity, i.e. |Wp(inf)| % ORD Order function [Wp] = make_weight(omega, A, M, ord) if nargin > 3 n = ord; else n = 1; end s = tf('s'); Wp = (s / (M^(1/n)) + omega)^n / (s + omega * A^(1/n))^n; end % vim: ts=2 sw=2 et: