% Generate transfer functions for loop shaping performance requirements % from parameters specified in uav_params.m % % Copyright (C) 2024, Naoki Sean Pross, ETH Zürich % This work is distributed under a permissive license, see LICENSE.txt % % Arguments: % PARAMS Struct of design parameters and constants generated by uav_params % PLOT When set to 'true' it plots the inverse magnitude of the % performance transfer function % % Return value: % MODEL Struct performance transfer functions function [perf] = uav_requirements(params, plot) % Laplace variable s = tf('s'); alpha_max = params.actuators.ServoAbsMaxAngle; alpha_max_omega = params.actuators.ServoNominalAngularVelocity; T_xy = params.performance.HorizontalSettleTime; T_z = params.performance.VerticalSettleTime; omega_nxy = 5 / T_xy; omega_nz = 10 / T_z; % W_Palpha = 1 / (s^2 + 2 * alpha_max_omega * s + alpha_max_omega^2); % W_Palpha = (1 - W_Palpha / dcgain(W_Palpha)) * .8; % W_Pomega = (1 - 1 / (T_z / 5 * s + 1)) * .1; W_Palpha = make_weight(alpha_max_omega, 15, 1.1, 3); W_Pomega = make_weight(omega_nz, 50, 10); % zeta = 1; % Almost critically damped % W_Pxy = 1 / (s^2 + 2 * zeta * omega_nxy * s + omega_nxy^2); % W_Pxy = 1 * W_Pxy / dcgain(W_Pxy); % W_Pz = 1 / (s^2 + 2 * zeta * omega_nz * s + omega_nz^2); % W_Pz = 1 * W_Pz / dcgain(W_Pz); W_Pxy = make_weight(omega_nxy, 2, 5); W_Pz = make_weight(omega_nz, 1, 10); % Set a speed limit W_Pxydot = .2 * tf(1, 1); W_Pzdot = .2 * tf(1, 1); W_Pphitheta = .01 * tf(1, [.1, 1]); W_Ppsi = .01 * tf(1, 1); % don't care W_PTheta = tf(1, [.1, 1]) * eye(3); % Construct performance vector by combining xy and z W_PP = blkdiag(W_Pxy * eye(2), W_Pz); W_PPdot = blkdiag(W_Pxydot * eye(2), W_Pzdot); W_PTheta = blkdiag(W_Pphitheta * eye(2), W_Ppsi); perf = struct(... 'FlapAngle', W_Palpha * eye(4), ... 'Thrust', W_Pomega, ... 'Position', W_PP, ... 'Velocity', W_PPdot, ... 'Angles', W_PTheta); if plot % Bode plots of performance requirements figure; hold on; bodemag(W_Palpha); bodemag(W_Pomega); bodemag(W_Pxy); bodemag(W_Pz); bodemag(W_Pxydot); bodemag(W_Pzdot); bodemag(W_Pphitheta); bodemag(W_Ppsi); grid on; legend('$W_{P,\alpha}$', '$W_{P,\omega}$', ... '$W_{P,xy}$', '$W_{P,z}$', ... '$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ... '$W_{P,\phi\theta}$', '$W_{P,\psi}$', ... 'interpreter', 'latex', 'fontSize', 8); title('Performance Requirements'); % Step response of position requirements figure; hold on; step(W_Pxy); step(W_Pz); step(W_Pxydot); step(W_Pzdot); step(W_Palpha); step(W_Pomega); grid on; legend('$W_{P,xy}$', '$W_{P,z}$', ... '$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ... '$W_{P,\alpha}$', '$W_{P,\omega}$', ... 'interpreter', 'latex', 'fontSize', 8); title('Step responses of performance requirements'); end end % Make a n-order performance weight function % % Arguments: % OMEGA Cutting frequency (-3dB) % A Magnitude at DC, i.e. |Wp(0)| % M Magnitude at infinity, i.e. |Wp(inf)| % ORD Order function [Wp] = make_weight(omega, A, M, ord) if nargin > 3 n = ord; else n = 1; end s = tf('s'); Wp = (s / (M^(1/n)) + omega)^n / (s + omega * A^(1/n))^n; end % vim: ts=2 sw=2 et: