% Simulate a step responses of ducted-fan VTOL micro-UAV. % % Copyright (C) 2024, Naoki Sean Pross, ETH Zürich % This work is distributed under a permissive license, see LICENSE.txt function [simout] = uav_sim_step(params, model, ctrl, uncert, nsamp, T, do_plots, do_noise) % Load closed loop model and add controller % more or less equivalent to doing usys = lft(Pnom, K) h = load_system('uav_model_uncertain_clp'); hws = get_param('uav_model_uncertain_clp', 'modelworkspace'); if isfield(ctrl, 'K') hws.assignin('K', ctrl.K); else error('You need to provide a controller ctrl.K'); end % There is an uncertainty block if isfield(uncert, 'Delta') fprintf(' - Running worst case with provided Delta.\n'); hws.assignin('Delta', uncert.Delta); else fprintf(' - No uncertainty error Delta was provided, setting to zero.\n'); Delta = tf(0) * zeros(sum(model.uncertain.BlockStructure)); hws.assignin('Delta', Delta); end ulmod_clp = linmod('uav_model_uncertain_clp'); P_clp = minreal(ss(ulmod_clp.a, ulmod_clp.b, ulmod_clp.c, ulmod_clp.d), [], false); % Check that closed loop is actually stable nx = size(P_clp.A, 1); fprintf(' - Closed loop dynamics have %d states\n', nx); if nx < 60 [~, nsta, nctrb, nustab, nobsv, nudetb] = pbhtest(P_clp); if nx ~= nsta error('Closed loop is not stable!'); end fprintf(' %d stable modes, %d unstable modes\n', nsta, nx - nsta); fprintf(' %d controllable modes, %d unstabilizable\n', nctrb, nustab); fprintf(' %d observable modes, %d undetectable\n', nobsv, nudetb); else eigvals = eig(P_clp.A); for i = 1:nx if real(eigvals(i)) >= 0 fprintf(' Closed loop is not stable!\n'); break; end end end % Generate indices for closed loop plant o = model.uncertain.dims.output; i = model.uncertain.dims.input; dims = struct(... 'ErrorAlpha', o.OutputErrorAlpha, ... 'ErrorOmega', o.OutputErrorOmega, ... 'ErrorPosition', o.OutputErrorPosition, ... 'ErrorVelocity', o.OutputErrorVelocity, ... 'ErrorEulerAngles', o.OutputErrorEulerAngles, ... 'Position', o.OutputNominalPosition, ... 'Velocity', o.OutputNominalVelocity, ... 'EulerAngles', o.OutputNominalEulerAngles, ... 'AngularRates', o.OutputNominalAngularRates, ... 'PlotAlpha', o.OutputPlotAlpha, ... 'PlotOmega', o.OutputPlotOmega, ... 'PlotReference', o.OutputPlotReference, ... 'PlotPosition', o.OutputPlotPosition, ... 'InputAlpha', i.InputNominalAlpha, ... 'InputOmega', i.InputNominalOmega ... ); idx = struct(); start = 1; fields = fieldnames(dims); for f = fields' dim = getfield(dims, f{1}); i = (start:(start + dim - 1))'; idx = setfield(idx, f{1}, i); start = start + dim; end % Input indices idx.InputDisturbanceWind = (1:3)'; idx.InputDisturbanceFlaps = (4:7)'; idx.InputReference = (8:10)'; % Create noise noise = zeros(7, nsamp); if do_noise % Noise (normalized) noise_alpha_amp = (.5 * (pi / 180)) / params.actuators.ServoAbsMaxAngle; noise_wind_amp = .01; noise = [noise_wind_amp * randn(3, nsamp); noise_alpha_amp * randn(4, nsamp)]; end % Step size step_size_h = .5 / params.normalization.HPosition; step_size_v = .5 / params.normalization.VPosition; % Create step inputs (normalized) ref_step = ones(1, nsamp); % 1d step function in_step_x = [ noise; step_size_h * ref_step; zeros(2, nsamp) ]; in_step_y = [ noise; zeros(1, nsamp); step_size_h * ref_step; zeros(1, nsamp) ]; in_step_z = [ noise; zeros(2, nsamp); -step_size_v * ref_step ]; % z points down % Simulation time t = linspace(0, T, nsamp); % Scale simulation outputs S = blkdiag(... model.uncertain.scaling.OutputErrorScaling, ... model.uncertain.scaling.OutputNominalScaling, ... model.uncertain.scaling.OutputPlotScaling, ... model.uncertain.scaling.InputNominalScaling ... ); % Simulate step responses out_step_x_norm = lsim(P_clp, in_step_x, t, 'foh'); out_step_y_norm = lsim(P_clp, in_step_y, t, 'foh'); out_step_z_norm = lsim(P_clp, in_step_z, t, 'foh'); out_step_x = out_step_x_norm * S; out_step_y = out_step_y_norm * S; out_step_z = out_step_z_norm * S; % Return simulation simout = struct(... 'Time', t, ... 'StepX', out_step_x, ... 'StepY', out_step_y, ... 'StepZ', out_step_z, ... 'StepXNorm', out_step_x_norm, ... 'StepYNorm', out_step_y_norm, ... 'StepZNorm', out_step_z_norm, ... 'Simulink', ulmod_clp, ... 'StateSpace', P_clp, ... 'index', idx); if do_plots % Conversion factors to_deg = 180 / pi; % radians to degrees to_rpm = pi / 30; % rad / s to RPM % Figure for flaps and Euler angles figure; sgtitle(sprintf(... '\\bfseries Step Response of Flap and Euler Angles (%s)', ... ctrl.Name), 'Interpreter', 'latex'); % Plot limits alpha_max_deg = params.actuators.ServoAbsMaxAngle * to_deg; euler_lim_deg = .5; omega_max_rpm = (params.actuators.PropellerMaxAngularVelocity ... - params.linearization.Inputs(5)) * to_rpm; omega_min_rpm = -params.linearization.Inputs(5) * to_rpm; % Plot step response from x to alpha subplot(2, 3, 1); hold on; plot(t, out_step_x(:, idx.PlotAlpha(1)) * to_deg); plot(t, out_step_x(:, idx.PlotAlpha(2)) * to_deg); plot(t, out_step_x(:, idx.PlotAlpha(3)) * to_deg); plot(t, out_step_x(:, idx.PlotAlpha(4)) * to_deg); plot([0, T], [1, 1] * alpha_max_deg, 'r--'); plot([0, T], [-1, -1] * alpha_max_deg, 'r--'); grid on; xlim([0, T]); ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]); title('Horizontal $x$ to Flaps', 'Interpreter', 'latex'); ylabel('Flap Angle (degrees)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ... 'Interpreter', 'latex'); % Plot step response from y to alpha subplot(2, 3, 2); hold on; plot(t, out_step_y(:, idx.PlotAlpha(1)) * to_deg); plot(t, out_step_y(:, idx.PlotAlpha(2)) * to_deg); plot(t, out_step_y(:, idx.PlotAlpha(3)) * to_deg); plot(t, out_step_y(:, idx.PlotAlpha(4)) * to_deg); plot([0, T], [1, 1] * alpha_max_deg, 'r--'); plot([0, T], [-1, -1] * alpha_max_deg, 'r--'); grid on; xlim([0, T]); ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]); title('Horizontal $y$ to Flaps', 'Interpreter', 'latex'); ylabel('Flap Angle (degrees)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ... 'Interpreter', 'latex'); % Plot step response from z to alpha subplot(2, 3, 3); hold on; plot(t, out_step_z(:, idx.PlotAlpha(1)) * to_deg); plot(t, out_step_z(:, idx.PlotAlpha(2)) * to_deg); plot(t, out_step_z(:, idx.PlotAlpha(3)) * to_deg); plot(t, out_step_z(:, idx.PlotAlpha(4)) * to_deg); plot([0, T], [1, 1] * alpha_max_deg, 'r--'); plot([0, T], [-1, -1] * alpha_max_deg, 'r--'); grid on; xlim([0, T]); ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]); title('Vertical $z$ to Flaps', 'Interpreter', 'latex'); ylabel('Flap Angle (degrees)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ... 'Interpreter', 'latex'); % Plot step response from x to Theta subplot(2, 3, 4); hold on; plot(t, out_step_x(:, idx.EulerAngles(1)) * to_deg); plot(t, out_step_x(:, idx.EulerAngles(2)) * to_deg); plot(t, out_step_x(:, idx.EulerAngles(3)) * to_deg); grid on; xlim([0, T]); ylim([-euler_lim_deg, euler_lim_deg]); title('Horizontal $x$ to Euler Angles', 'Interpreter', 'latex'); ylabel('Euler Angle (degrees)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ... 'Interpreter', 'latex'); % Plot step response from y to Theta subplot(2, 3, 5); hold on; plot(t, out_step_y(:, idx.EulerAngles(1)) * to_deg); plot(t, out_step_y(:, idx.EulerAngles(2)) * to_deg); plot(t, out_step_y(:, idx.EulerAngles(3)) * to_deg); grid on; xlim([0, T]); ylim([-euler_lim_deg, euler_lim_deg]); title('Horizontal $y$ to Euler Angles', 'Interpreter', 'latex'); ylabel('Euler Angle (degrees)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ... 'Interpreter', 'latex'); % Plot step response from z to Theta subplot(2, 3, 6); hold on; plot(t, out_step_z(:, idx.EulerAngles(1)) * to_deg); plot(t, out_step_z(:, idx.EulerAngles(2)) * to_deg); plot(t, out_step_z(:, idx.EulerAngles(3)) * to_deg); grid on; xlim([0, T]); ylim([-euler_lim_deg, euler_lim_deg]); title('Vertical $z$ to Euler Angles', 'Interpreter', 'latex'); ylabel('Euler Angle (degrees)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ... 'Interpreter', 'latex'); % Plot step response from z to omega figure; sgtitle(sprintf(... '\\bfseries Step Response to Propeller (%s)', ... ctrl.Name), 'Interpreter', 'latex'); hold on; step(P_clp(idx.PlotOmega, idx.InputReference(3)) * to_rpm, T); % plot([0, T], [1, 1] * omega_min_rpm, 'r--'); % plot([0, T], [1, 1] * omega_max_rpm, 'r--'); grid on; % ylim([omega_min_rpm - 1, omega_max_rpm + 1]); title('Vertical $z$ to Thruster $\omega$', 'Interpreter', 'latex'); ylabel('Angular Velocity (RPM)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\omega(t)$', 'Interpreter', 'latex'); % Figure for position and velocity figure; sgtitle(sprintf(... '\\bfseries Step Response of Position and Speed (%s)', ... ctrl.Name), 'Interpreter', 'latex'); % Plot step response from horizontal reference to horizontal position subplot(2, 2, 1); hold on; plot(t, out_step_x(:, idx.PlotPosition(1))); plot(t, out_step_y(:, idx.PlotPosition(2))); plot(t, out_step_x(:, idx.PlotReference(1)), '--'); grid on; title('Horizontal Position', 'Interpreter', 'latex'); ylabel('Distance (meters)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$x(t)$', '$y(t)$', 'Interpreter', 'latex'); % Plot step response horizontal reference to horizontal speed subplot(2, 2, 2); hold on; plot(t, out_step_x(:, idx.Velocity(1))); plot(t, out_step_y(:, idx.Velocity(2))); grid on; title('Horizontal Velocity', 'Interpreter', 'latex'); ylabel('Velocity (m / s)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\dot{x}(t)$', '$\dot{y}(t)$', 'Interpreter', 'latex'); % Plot step response from vertical reference to vertical position subplot(2, 2, 3); hold on; plot(t, out_step_z(:, idx.PlotPosition(3))); plot(t, out_step_z(:, idx.PlotReference(3)), '--'); grid on; title('Vertical Position', 'Interpreter', 'latex'); ylabel('Distance (meters)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$z(t)$', 'Interpreter', 'latex'); % Plot step response vertical reference to vertical speed subplot(2, 2, 4); hold on; plot(t, out_step_z(:, idx.ErrorVelocity(3))); grid on; title('Vertical Velocity', 'Interpreter', 'latex'); ylabel('Velocity (m / s)', 'Interpreter', 'latex'); xlabel('Time (seconds)', 'Interpreter', 'latex'); legend('$\dot{z}(t)$', 'Interpreter', 'latex'); end end % vim:ts=2 sw=2 et: