% Generate transfer functions for loop shaping stability (uncertainty) % requirements from parameters specified in uav_params.m % % Copyright (C) 2024, Naoki Sean Pross, ETH Zürich % This work is distributed under a permissive license, see LICENSE.txt % % Arguments: % PARAMS Struct of design parameters and constants generated by uav_params % PLOT When set to 'true' it plots the inverse magnitude of the % performance transfer function % % Return value: % UNCERT Struct of uncertainty transfer functions function [uncert] = uav_performance(params, do_plots) s = tf('s'); % relative errors eps_T = params.aerodynamics.ThrustOmegaPropUncertainty; eps_r = params.mechanical.GyroscopicInertiaZUncertainty; eps_S = params.aerodynamics.FlapAreaUncertainty; eps_l = params.aerodynamics.LiftCoefficientUncertainty; eps_d = params.aerodynamics.DragCoefficientsUncertainties(1); % eps_0 = params.aerodynamics.DragCoefficients(2); eps_omega = max(.5 * eps_T, eps_r); eps_alpha = max(eps_l + eps_S + 2 * eps_omega, eps_S + eps_d + eps_omega); % TODO: set proper constraints % band pass parameters for W_malpha % wh = 20; % high freq % wl = .1; % low freq % W_malpha = eps_alpha * (s / wl) / ((s / wh + 1) * (s / wl + 1)); % W_momega = eps_omega * 10 / (s + 10); % W_mState = .01 * 10 / (s + 10); b = 1e3; W_malpha = make_weight(b, 1 / eps_alpha, 1e-2); W_momega = tf(0); W_mState = 1 - 1 / (s / 50 + 1); uncert = struct(... 'FlapAngle', W_malpha * eye(4), ... 'Thrust', W_momega, ... 'StateLinApprox', W_mState * eye(12)); if do_plots % Bode plots of performance requirements figure; hold on; bodemag(W_malpha); bodemag(W_momega); bodemag(W_mState); grid on; legend('$W_{m,\alpha}$', '$W_{m,\omega}$', '$W_{m,\mathbf{P}}$', ... 'interpreter', 'latex') title('\bfseries Stability Requirement (only for $\mu$-Synthesis)', ... 'interpreter', 'latex') end end % Make a n-order performance weight function % % Arguments: % OMEGA Cutting frequency (-3dB) % A Magnitude at DC, i.e. |Wp(0)| % M Magnitude at infinity, i.e. |Wp(inf)| % ORD Order function [Wp] = make_weight(omega, A, M, ord) if nargin > 3 n = ord; else n = 1; end s = tf('s'); Wp = (s / (M^(1/n)) + omega)^n / (s + omega * A^(1/n))^n; end % vim: ts=2 sw=2 et: