diff options
author | Nao Pross <np@0hm.ch> | 2024-02-12 15:23:24 +0100 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2024-02-12 15:23:24 +0100 |
commit | fbd6758fb4649b146176dbbc2dfe9384c69ef58d (patch) | |
tree | 0993d5c74a5cd1773ff9a572e4926d3102c0299f /src/EigenUnsupported/FFT | |
parent | Move into version control (diff) | |
download | fsisotool-fbd6758fb4649b146176dbbc2dfe9384c69ef58d.tar.gz fsisotool-fbd6758fb4649b146176dbbc2dfe9384c69ef58d.zip |
Remove old stuff with Eigen
Diffstat (limited to '')
-rw-r--r-- | src/EigenUnsupported/FFT | 419 |
1 files changed, 0 insertions, 419 deletions
diff --git a/src/EigenUnsupported/FFT b/src/EigenUnsupported/FFT deleted file mode 100644 index c8c311a..0000000 --- a/src/EigenUnsupported/FFT +++ /dev/null @@ -1,419 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Mark Borgerding mark a borgerding net -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FFT_H -#define EIGEN_FFT_H - -#include <complex> -#include <vector> -#include <map> -#include "../../Eigen/Core" - - -/** - * \defgroup FFT_Module Fast Fourier Transform module - * - * \code - * #include <unsupported/Eigen/FFT> - * \endcode - * - * This module provides Fast Fourier transformation, with a configurable backend - * implementation. - * - * The default implementation is based on kissfft. It is a small, free, and - * reasonably efficient default. - * - * There are currently two implementation backend: - * - * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. - * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form. - * - * \section FFTDesign Design - * - * The following design decisions were made concerning scaling and - * half-spectrum for real FFT. - * - * The intent is to facilitate generic programming and ease migrating code - * from Matlab/octave. - * We think the default behavior of Eigen/FFT should favor correctness and - * generality over speed. Of course, the caller should be able to "opt-out" from this - * behavior and get the speed increase if they want it. - * - * 1) %Scaling: - * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there - * is a constant gain incurred after the forward&inverse transforms , so - * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply. - * The downside is that algorithms that worked correctly in Matlab/octave - * don't behave the same way once implemented in C++. - * - * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. - * - * 2) Real FFT half-spectrum - * Other libraries use only half the frequency spectrum (plus one extra - * sample for the Nyquist bin) for a real FFT, the other half is the - * conjugate-symmetric of the first half. This saves them a copy and some - * memory. The downside is the caller needs to have special logic for the - * number of bins in complex vs real. - * - * How Eigen/FFT differs: The full spectrum is returned from the forward - * transform. This facilitates generic template programming by obviating - * separate specializations for real vs complex. On the inverse - * transform, only half the spectrum is actually used if the output type is real. - */ - - -#include "../../Eigen/src/Core/util/DisableStupidWarnings.h" - -#ifdef EIGEN_FFTW_DEFAULT -// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size -# include <fftw3.h> -# include "src/FFT/ei_fftw_impl.h" - namespace Eigen { - //template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work - template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {}; - } -#elif defined EIGEN_MKL_DEFAULT -// TODO -// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form -# include "src/FFT/ei_imklfft_impl.h" - namespace Eigen { - template <typename T> struct default_fft_impl : public internal::imklfft_impl {}; - } -#else -// internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft -// -# include "src/FFT/ei_kissfft_impl.h" - namespace Eigen { - template <typename T> - struct default_fft_impl : public internal::kissfft_impl<T> {}; - } -#endif - -namespace Eigen { - - -// -template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy; -template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy; - -namespace internal { -template<typename T_SrcMat,typename T_FftIfc> -struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> > -{ - typedef typename T_SrcMat::PlainObject ReturnType; -}; -template<typename T_SrcMat,typename T_FftIfc> -struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> > -{ - typedef typename T_SrcMat::PlainObject ReturnType; -}; -} - -template<typename T_SrcMat,typename T_FftIfc> -struct fft_fwd_proxy - : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> > -{ - typedef DenseIndex Index; - - fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} - - template<typename T_DestMat> void evalTo(T_DestMat& dst) const; - - Index rows() const { return m_src.rows(); } - Index cols() const { return m_src.cols(); } -protected: - const T_SrcMat & m_src; - T_FftIfc & m_ifc; - Index m_nfft; -}; - -template<typename T_SrcMat,typename T_FftIfc> -struct fft_inv_proxy - : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> > -{ - typedef DenseIndex Index; - - fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} - - template<typename T_DestMat> void evalTo(T_DestMat& dst) const; - - Index rows() const { return m_src.rows(); } - Index cols() const { return m_src.cols(); } -protected: - const T_SrcMat & m_src; - T_FftIfc & m_ifc; - Index m_nfft; -}; - - -template <typename T_Scalar, - typename T_Impl=default_fft_impl<T_Scalar> > -class FFT -{ - public: - typedef T_Impl impl_type; - typedef DenseIndex Index; - typedef typename impl_type::Scalar Scalar; - typedef typename impl_type::Complex Complex; - - enum Flag { - Default=0, // goof proof - Unscaled=1, - HalfSpectrum=2, - // SomeOtherSpeedOptimization=4 - Speedy=32767 - }; - - FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { } - - inline - bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;} - - inline - void SetFlag(Flag f) { m_flag |= (int)f;} - - inline - void ClearFlag(Flag f) { m_flag &= (~(int)f);} - - inline - void fwd( Complex * dst, const Scalar * src, Index nfft) - { - m_impl.fwd(dst,src,static_cast<int>(nfft)); - if ( HasFlag(HalfSpectrum) == false) - ReflectSpectrum(dst,nfft); - } - - inline - void fwd( Complex * dst, const Complex * src, Index nfft) - { - m_impl.fwd(dst,src,static_cast<int>(nfft)); - } - - /* - inline - void fwd2(Complex * dst, const Complex * src, int n0,int n1) - { - m_impl.fwd2(dst,src,n0,n1); - } - */ - - template <typename _Input> - inline - void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) - { - if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) ) - dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin - else - dst.resize(src.size()); - fwd(&dst[0],&src[0],src.size()); - } - - template<typename InputDerived, typename ComplexDerived> - inline - void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1) - { - typedef typename ComplexDerived::Scalar dst_type; - typedef typename InputDerived::Scalar src_type; - EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time - EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) - - if (nfft<1) - nfft = src.size(); - - if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) ) - dst.derived().resize( (nfft>>1)+1); - else - dst.derived().resize(nfft); - - if ( src.innerStride() != 1 || src.size() < nfft ) { - Matrix<src_type,1,Dynamic> tmp; - if (src.size()<nfft) { - tmp.setZero(nfft); - tmp.block(0,0,src.size(),1 ) = src; - }else{ - tmp = src; - } - fwd( &dst[0],&tmp[0],nfft ); - }else{ - fwd( &dst[0],&src[0],nfft ); - } - } - - template<typename InputDerived> - inline - fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > - fwd( const MatrixBase<InputDerived> & src, Index nfft=-1) - { - return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); - } - - template<typename InputDerived> - inline - fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > - inv( const MatrixBase<InputDerived> & src, Index nfft=-1) - { - return fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); - } - - inline - void inv( Complex * dst, const Complex * src, Index nfft) - { - m_impl.inv( dst,src,static_cast<int>(nfft) ); - if ( HasFlag( Unscaled ) == false) - scale(dst,Scalar(1./nfft),nfft); // scale the time series - } - - inline - void inv( Scalar * dst, const Complex * src, Index nfft) - { - m_impl.inv( dst,src,static_cast<int>(nfft) ); - if ( HasFlag( Unscaled ) == false) - scale(dst,Scalar(1./nfft),nfft); // scale the time series - } - - template<typename OutputDerived, typename ComplexDerived> - inline - void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1) - { - typedef typename ComplexDerived::Scalar src_type; - typedef typename ComplexDerived::RealScalar real_type; - typedef typename OutputDerived::Scalar dst_type; - const bool realfft= (NumTraits<dst_type>::IsComplex == 0); - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time - EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) - - if (nfft<1) { //automatic FFT size determination - if ( realfft && HasFlag(HalfSpectrum) ) - nfft = 2*(src.size()-1); //assume even fft size - else - nfft = src.size(); - } - dst.derived().resize( nfft ); - - // check for nfft that does not fit the input data size - Index resize_input= ( realfft && HasFlag(HalfSpectrum) ) - ? ( (nfft/2+1) - src.size() ) - : ( nfft - src.size() ); - - if ( src.innerStride() != 1 || resize_input ) { - // if the vector is strided, then we need to copy it to a packed temporary - Matrix<src_type,1,Dynamic> tmp; - if ( resize_input ) { - size_t ncopy = (std::min)(src.size(),src.size() + resize_input); - tmp.setZero(src.size() + resize_input); - if ( realfft && HasFlag(HalfSpectrum) ) { - // pad at the Nyquist bin - tmp.head(ncopy) = src.head(ncopy); - tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin - }else{ - size_t nhead,ntail; - nhead = 1+ncopy/2-1; // range [0:pi) - ntail = ncopy/2-1; // range (-pi:0) - tmp.head(nhead) = src.head(nhead); - tmp.tail(ntail) = src.tail(ntail); - if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it - tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5); - }else{ // expanding -- split the old Nyquist bin into two halves - tmp(nhead) = src(nhead) * real_type(.5); - tmp(tmp.size()-nhead) = tmp(nhead); - } - } - }else{ - tmp = src; - } - inv( &dst[0],&tmp[0], nfft); - }else{ - inv( &dst[0],&src[0], nfft); - } - } - - template <typename _Output> - inline - void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1) - { - if (nfft<1) - nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size(); - dst.resize( nfft ); - inv( &dst[0],&src[0],nfft); - } - - - /* - // TODO: multi-dimensional FFTs - inline - void inv2(Complex * dst, const Complex * src, int n0,int n1) - { - m_impl.inv2(dst,src,n0,n1); - if ( HasFlag( Unscaled ) == false) - scale(dst,1./(n0*n1),n0*n1); - } - */ - - inline - impl_type & impl() {return m_impl;} - private: - - template <typename T_Data> - inline - void scale(T_Data * x,Scalar s,Index nx) - { -#if 1 - for (int k=0;k<nx;++k) - *x++ *= s; -#else - if ( ((ptrdiff_t)x) & 15 ) - Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s; - else - Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s; - //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; -#endif - } - - inline - void ReflectSpectrum(Complex * freq, Index nfft) - { - // create the implicit right-half spectrum (conjugate-mirror of the left-half) - Index nhbins=(nfft>>1)+1; - for (Index k=nhbins;k < nfft; ++k ) - freq[k] = conj(freq[nfft-k]); - } - - impl_type m_impl; - int m_flag; -}; - -template<typename T_SrcMat,typename T_FftIfc> -template<typename T_DestMat> inline -void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const -{ - m_ifc.fwd( dst, m_src, m_nfft); -} - -template<typename T_SrcMat,typename T_FftIfc> -template<typename T_DestMat> inline -void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const -{ - m_ifc.inv( dst, m_src, m_nfft); -} - -} - -#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" - -#endif |