From eda5bc26f44ee9a6f83dcf8c91f17296d7fc509d Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Mon, 12 Feb 2024 14:52:43 +0100 Subject: Move into version control --- .../include/armadillo_bits/glue_mvnrnd_meat.hpp | 175 +++++++++++++++++++++ 1 file changed, 175 insertions(+) create mode 100644 src/armadillo/include/armadillo_bits/glue_mvnrnd_meat.hpp (limited to 'src/armadillo/include/armadillo_bits/glue_mvnrnd_meat.hpp') diff --git a/src/armadillo/include/armadillo_bits/glue_mvnrnd_meat.hpp b/src/armadillo/include/armadillo_bits/glue_mvnrnd_meat.hpp new file mode 100644 index 0000000..3c3019f --- /dev/null +++ b/src/armadillo/include/armadillo_bits/glue_mvnrnd_meat.hpp @@ -0,0 +1,175 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup glue_mvnrnd +//! @{ + + +// implementation based on: +// James E. Gentle. +// Generation of Random Numbers. +// Computational Statistics, pp. 305-331, 2009. +// http://dx.doi.org/10.1007/978-0-387-98144-4_7 + + +template +inline +void +glue_mvnrnd_vec::apply(Mat& out, const Glue& expr) + { + arma_extra_debug_sigprint(); + + const bool status = glue_mvnrnd::apply_direct(out, expr.A, expr.B, uword(1)); + + if(status == false) + { + out.soft_reset(); + arma_stop_runtime_error("mvnrnd(): given covariance matrix is not symmetric positive semi-definite"); + } + } + + + +template +inline +void +glue_mvnrnd::apply(Mat& out, const Glue& expr) + { + arma_extra_debug_sigprint(); + + const bool status = glue_mvnrnd::apply_direct(out, expr.A, expr.B, expr.aux_uword); + + if(status == false) + { + out.soft_reset(); + arma_stop_runtime_error("mvnrnd(): given covariance matrix is not symmetric positive semi-definite"); + } + } + + + +template +inline +bool +glue_mvnrnd::apply_direct(Mat& out, const Base& M, const Base& C, const uword N) + { + arma_extra_debug_sigprint(); + + typedef typename T1::elem_type eT; + + const quasi_unwrap UM(M.get_ref()); + const quasi_unwrap UC(C.get_ref()); + + arma_debug_check( (UM.M.is_colvec() == false) && (UM.M.is_empty() == false), "mvnrnd(): given mean must be a column vector" ); + arma_debug_check( (UC.M.is_square() == false), "mvnrnd(): given covariance matrix must be square sized" ); + arma_debug_check( (UM.M.n_rows != UC.M.n_rows), "mvnrnd(): number of rows in given mean vector and covariance matrix must match" ); + + if( UM.M.is_empty() || UC.M.is_empty() ) + { + out.set_size(0,N); + return true; + } + + if((arma_config::debug) && (auxlib::rudimentary_sym_check(UC.M) == false)) + { + arma_debug_warn_level(1, "mvnrnd(): given matrix is not symmetric"); + } + + bool status = false; + + if(UM.is_alias(out) || UC.is_alias(out)) + { + Mat tmp; + + status = glue_mvnrnd::apply_noalias(tmp, UM.M, UC.M, N); + + out.steal_mem(tmp); + } + else + { + status = glue_mvnrnd::apply_noalias(out, UM.M, UC.M, N); + } + + return status; + } + + + +template +inline +bool +glue_mvnrnd::apply_noalias(Mat& out, const Mat& M, const Mat& C, const uword N) + { + arma_extra_debug_sigprint(); + + Mat D; + + const bool chol_status = op_chol::apply_direct(D, C, 1); // '1' means "lower triangular" + + if(chol_status == false) + { + // C is not symmetric positive definite, so find approximate square root of C + + Col eigval; // NOTE: eT is constrained to be real (ie. float or double) in fn_mvnrnd.hpp + Mat eigvec; + + const bool eig_status = eig_sym_helper(eigval, eigvec, C, 'd', "mvnrnd()"); + + if(eig_status == false) { return false; } + + eT* eigval_mem = eigval.memptr(); + const uword eigval_n_elem = eigval.n_elem; + + // since we're doing an approximation, tolerate tiny negative eigenvalues + + const eT tol = eT(-100) * Datum::eps * norm(C, "fro"); + + if(arma_isfinite(tol) == false) { return false; } + + for(uword i=0; i DD = eigvec * diagmat(sqrt(eigval)); + + D.steal_mem(DD); + } + + out = D * randn< Mat >(M.n_rows, N); + + if(N == 1) + { + out += M; + } + else + if(N > 1) + { + out.each_col() += M; + } + + return true; + } + + + +//! @} -- cgit v1.2.1