// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup band_helper //! @{ namespace band_helper { template inline bool is_band(uword& out_KL, uword& out_KU, const Mat& A, const uword N_min) { arma_extra_debug_sigprint(); // NOTE: assuming that A has a square size // NOTE: assuming that N_min is >= 4 const uword N = A.n_rows; if(N < N_min) { return false; } // first, quickly check bottom-left and top-right corners const eT eT_zero = eT(0); const eT* A_col0 = A.memptr(); const eT* A_col1 = A_col0 + N; if( (A_col0[N-2] != eT_zero) || (A_col0[N-1] != eT_zero) || (A_col1[N-2] != eT_zero) || (A_col1[N-1] != eT_zero) ) { return false; } const eT* A_colNm2 = A.colptr(N-2); const eT* A_colNm1 = A_colNm2 + N; if( (A_colNm2[0] != eT_zero) || (A_colNm2[1] != eT_zero) || (A_colNm1[0] != eT_zero) || (A_colNm1[1] != eT_zero) ) { return false; } // if we reached this point, go through the entire matrix to work out number of subdiagonals and superdiagonals const uword n_nonzero_threshold = (N*N)/4; // empirically determined uword KL = 0; // number of subdiagonals uword KU = 0; // number of superdiagonals const eT* A_colptr = A.memptr(); for(uword col=0; col < N; ++col) { uword first_nonzero_row = col; uword last_nonzero_row = col; for(uword row=0; row < col; ++row) { if( A_colptr[row] != eT_zero ) { first_nonzero_row = row; break; } } for(uword row=(col+1); row < N; ++row) { last_nonzero_row = (A_colptr[row] != eT_zero) ? row : last_nonzero_row; } const uword L_count = last_nonzero_row - col; const uword U_count = col - first_nonzero_row; if( (L_count > KL) || (U_count > KU) ) { KL = (std::max)(KL, L_count); KU = (std::max)(KU, U_count); const uword n_nonzero = N*(KL+KU+1) - (KL*(KL+1) + KU*(KU+1))/2; // return as soon as we know that it's not worth analysing the matrix any further if(n_nonzero > n_nonzero_threshold) { return false; } } A_colptr += N; } out_KL = KL; out_KU = KU; return true; } template inline bool is_band_lower(uword& out_KD, const Mat& A, const uword N_min) { arma_extra_debug_sigprint(); // NOTE: assuming that A has a square size // NOTE: assuming that N_min is >= 4 const uword N = A.n_rows; if(N < N_min) { return false; } // first, quickly check bottom-left corner const eT eT_zero = eT(0); const eT* A_col0 = A.memptr(); const eT* A_col1 = A_col0 + N; if( (A_col0[N-2] != eT_zero) || (A_col0[N-1] != eT_zero) || (A_col1[N-2] != eT_zero) || (A_col1[N-1] != eT_zero) ) { return false; } // if we reached this point, go through the bottom triangle to work out number of subdiagonals const uword n_nonzero_threshold = ( N*N - (N*(N-1))/2 ) / 4; // empirically determined uword KL = 0; // number of subdiagonals const eT* A_colptr = A.memptr(); for(uword col=0; col < N; ++col) { uword last_nonzero_row = col; for(uword row=(col+1); row < N; ++row) { last_nonzero_row = (A_colptr[row] != eT_zero) ? row : last_nonzero_row; } const uword L_count = last_nonzero_row - col; if(L_count > KL) { KL = L_count; const uword n_nonzero = N*(KL+1) - (KL*(KL+1))/2; // return as soon as we know that it's not worth analysing the matrix any further if(n_nonzero > n_nonzero_threshold) { return false; } } A_colptr += N; } out_KD = KL; return true; } template inline bool is_band_upper(uword& out_KD, const Mat& A, const uword N_min) { arma_extra_debug_sigprint(); // NOTE: assuming that A has a square size // NOTE: assuming that N_min is >= 4 const uword N = A.n_rows; if(N < N_min) { return false; } // first, quickly check top-right corner const eT eT_zero = eT(0); const eT* A_colNm2 = A.colptr(N-2); const eT* A_colNm1 = A_colNm2 + N; if( (A_colNm2[0] != eT_zero) || (A_colNm2[1] != eT_zero) || (A_colNm1[0] != eT_zero) || (A_colNm1[1] != eT_zero) ) { return false; } // if we reached this point, go through the entire matrix to work out number of superdiagonals const uword n_nonzero_threshold = ( N*N - (N*(N-1))/2 ) / 4; // empirically determined uword KU = 0; // number of superdiagonals const eT* A_colptr = A.memptr(); for(uword col=0; col < N; ++col) { uword first_nonzero_row = col; for(uword row=0; row < col; ++row) { if( A_colptr[row] != eT_zero ) { first_nonzero_row = row; break; } } const uword U_count = col - first_nonzero_row; if(U_count > KU) { KU = U_count; const uword n_nonzero = N*(KU+1) - (KU*(KU+1))/2; // return as soon as we know that it's not worth analysing the matrix any further if(n_nonzero > n_nonzero_threshold) { return false; } } A_colptr += N; } out_KD = KU; return true; } template inline void compress(Mat& AB, const Mat& A, const uword KL, const uword KU, const bool use_offset) { arma_extra_debug_sigprint(); // NOTE: assuming that A has a square size // band matrix storage format // http://www.netlib.org/lapack/lug/node124.html // for ?gbsv, matrix AB size: 2*KL+KU+1 x N; band representation of A stored in rows KL+1 to 2*KL+KU+1 (note: fortran counts from 1) // for ?gbsvx, matrix AB size: KL+KU+1 x N; band representaiton of A stored in rows 1 to KL+KU+1 (note: fortran counts from 1) // // the +1 in the above formulas is to take into account the main diagonal const uword AB_n_rows = (use_offset) ? uword(2*KL + KU + 1) : uword(KL + KU + 1); const uword N = A.n_rows; AB.set_size(AB_n_rows, N); if(A.is_empty()) { AB.zeros(); return; } if(AB_n_rows == uword(1)) { eT* AB_mem = AB.memptr(); for(uword i=0; i KU) ? uword(j - KU) : uword(0); const uword A_row_endp1 = (std::min)(N, j+KL+1); const uword length = A_row_endp1 - A_row_start; const uword AB_row_start = (KU > j) ? (KU - j) : uword(0); const eT* A_colptr = A.colptr(j) + A_row_start; eT* AB_colptr = AB.colptr(j) + AB_row_start + ( (use_offset) ? KL : uword(0) ); arrayops::copy( AB_colptr, A_colptr, length ); } } } template inline void uncompress(Mat& A, const Mat& AB, const uword KL, const uword KU, const bool use_offset) { arma_extra_debug_sigprint(); const uword AB_n_rows = AB.n_rows; const uword N = AB.n_cols; arma_debug_check( (AB_n_rows != ((use_offset) ? uword(2*KL + KU + 1) : uword(KL + KU + 1))), "band_helper::uncompress(): detected inconsistency" ); A.zeros(N,N); // assuming there is no aliasing between A and AB if(AB_n_rows == uword(1)) { const eT* AB_mem = AB.memptr(); for(uword i=0; i KU) ? uword(j - KU) : uword(0); const uword A_row_endp1 = (std::min)(N, j+KL+1); const uword length = A_row_endp1 - A_row_start; const uword AB_row_start = (KU > j) ? (KU - j) : uword(0); const eT* AB_colptr = AB.colptr(j) + AB_row_start + ( (use_offset) ? KL : uword(0) ); eT* A_colptr = A.colptr(j) + A_row_start; arrayops::copy( A_colptr, AB_colptr, length ); } } } template inline void extract_tridiag(Mat& out, const Mat& A) { arma_extra_debug_sigprint(); // NOTE: assuming that A has a square size and is at least 2x2 const uword N = A.n_rows; out.set_size(N, 3); // assuming there is no aliasing between 'out' and 'A' if(N < 2) { return; } eT* DL = out.colptr(0); eT* DD = out.colptr(1); eT* DU = out.colptr(2); DD[0] = A[0]; DL[0] = A[1]; const uword Nm1 = N-1; const uword Nm2 = N-2; for(uword i=0; i < Nm2; ++i) { const uword ip1 = i+1; const eT* data = &(A.at(i, ip1)); const eT tmp0 = data[0]; const eT tmp1 = data[1]; const eT tmp2 = data[2]; DL[ip1] = tmp2; DD[ip1] = tmp1; DU[i ] = tmp0; } const eT* data = &(A.at(Nm2, Nm1)); DL[Nm1] = 0; DU[Nm2] = data[0]; DU[Nm1] = 0; DD[Nm1] = data[1]; } } // end of namespace band_helper //! @}