// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup fn_trace //! @{ template arma_warn_unused inline typename T1::elem_type trace(const Base& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const Proxy P(X.get_ref()); const uword N = (std::min)(P.get_n_rows(), P.get_n_cols()); eT val1 = eT(0); eT val2 = eT(0); uword i,j; for(i=0, j=1; j arma_warn_unused inline typename T1::elem_type trace(const Op& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const diagmat_proxy A(X.m); const uword N = (std::min)(A.n_rows, A.n_cols); eT val = eT(0); for(uword i=0; i arma_warn_unused inline typename enable_if2< is_cx::no, typename T1::elem_type>::result trace(const Glue& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const partial_unwrap tmp1(X.A); const partial_unwrap tmp2(X.B); const typename partial_unwrap::stored_type& A = tmp1.M; const typename partial_unwrap::stored_type& B = tmp2.M; const bool use_alpha = partial_unwrap::do_times || partial_unwrap::do_times; const eT alpha = use_alpha ? (tmp1.get_val() * tmp2.get_val()) : eT(0); arma_debug_assert_trans_mul_size< partial_unwrap::do_trans, partial_unwrap::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); if( (A.n_elem == 0) || (B.n_elem == 0) ) { return eT(0); } const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; eT acc = eT(0); if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == false) ) { const uword N = (std::min)(A_n_rows, B_n_cols); eT acc1 = eT(0); eT acc2 = eT(0); for(uword k=0; k < N; ++k) { const eT* B_colptr = B.colptr(k); // condition: A_n_cols = B_n_rows uword j; for(j=1; j < A_n_cols; j+=2) { const uword i = (j-1); const eT tmp_i = B_colptr[i]; const eT tmp_j = B_colptr[j]; acc1 += A.at(k, i) * tmp_i; acc2 += A.at(k, j) * tmp_j; } const uword i = (j-1); if(i < A_n_cols) { acc1 += A.at(k, i) * B_colptr[i]; } } acc = (acc1 + acc2); } else if( (partial_unwrap::do_trans == true ) && (partial_unwrap::do_trans == false) ) { const uword N = (std::min)(A_n_cols, B_n_cols); for(uword k=0; k < N; ++k) { const eT* A_colptr = A.colptr(k); const eT* B_colptr = B.colptr(k); // condition: A_n_rows = B_n_rows acc += op_dot::direct_dot(A_n_rows, A_colptr, B_colptr); } } else if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == true ) ) { const uword N = (std::min)(A_n_rows, B_n_rows); for(uword k=0; k < N; ++k) { // condition: A_n_cols = B_n_cols for(uword i=0; i < A_n_cols; ++i) { acc += A.at(k,i) * B.at(k,i); } } } else if( (partial_unwrap::do_trans == true ) && (partial_unwrap::do_trans == true ) ) { const uword N = (std::min)(A_n_cols, B_n_rows); for(uword k=0; k < N; ++k) { const eT* A_colptr = A.colptr(k); // condition: A_n_rows = B_n_cols for(uword i=0; i < A_n_rows; ++i) { acc += A_colptr[i] * B.at(k,i); } } } return (use_alpha) ? (alpha * acc) : acc; } //! speedup for trace(A*B); complex elements template arma_warn_unused inline typename enable_if2< is_cx::yes, typename T1::elem_type>::result trace(const Glue& X) { arma_extra_debug_sigprint(); typedef typename T1::pod_type T; typedef typename T1::elem_type eT; const partial_unwrap tmp1(X.A); const partial_unwrap tmp2(X.B); const typename partial_unwrap::stored_type& A = tmp1.M; const typename partial_unwrap::stored_type& B = tmp2.M; const bool use_alpha = partial_unwrap::do_times || partial_unwrap::do_times; const eT alpha = use_alpha ? (tmp1.get_val() * tmp2.get_val()) : eT(0); arma_debug_assert_trans_mul_size< partial_unwrap::do_trans, partial_unwrap::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); if( (A.n_elem == 0) || (B.n_elem == 0) ) { return eT(0); } const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; eT acc = eT(0); if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == false) ) { const uword N = (std::min)(A_n_rows, B_n_cols); T acc_real = T(0); T acc_imag = T(0); for(uword k=0; k < N; ++k) { const eT* B_colptr = B.colptr(k); // condition: A_n_cols = B_n_rows for(uword i=0; i < A_n_cols; ++i) { // acc += A.at(k, i) * B_colptr[i]; const std::complex& xx = A.at(k, i); const std::complex& yy = B_colptr[i]; const T a = xx.real(); const T b = xx.imag(); const T c = yy.real(); const T d = yy.imag(); acc_real += (a*c) - (b*d); acc_imag += (a*d) + (b*c); } } acc = std::complex(acc_real, acc_imag); } else if( (partial_unwrap::do_trans == true) && (partial_unwrap::do_trans == false) ) { const uword N = (std::min)(A_n_cols, B_n_cols); T acc_real = T(0); T acc_imag = T(0); for(uword k=0; k < N; ++k) { const eT* A_colptr = A.colptr(k); const eT* B_colptr = B.colptr(k); // condition: A_n_rows = B_n_rows for(uword i=0; i < A_n_rows; ++i) { // acc += std::conj(A_colptr[i]) * B_colptr[i]; const std::complex& xx = A_colptr[i]; const std::complex& yy = B_colptr[i]; const T a = xx.real(); const T b = xx.imag(); const T c = yy.real(); const T d = yy.imag(); // take into account the complex conjugate of xx acc_real += (a*c) + (b*d); acc_imag += (a*d) - (b*c); } } acc = std::complex(acc_real, acc_imag); } else if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == true) ) { const uword N = (std::min)(A_n_rows, B_n_rows); T acc_real = T(0); T acc_imag = T(0); for(uword k=0; k < N; ++k) { // condition: A_n_cols = B_n_cols for(uword i=0; i < A_n_cols; ++i) { // acc += A.at(k,i) * std::conj(B.at(k,i)); const std::complex& xx = A.at(k, i); const std::complex& yy = B.at(k, i); const T a = xx.real(); const T b = xx.imag(); const T c = yy.real(); const T d = -yy.imag(); // take the conjugate acc_real += (a*c) - (b*d); acc_imag += (a*d) + (b*c); } } acc = std::complex(acc_real, acc_imag); } else if( (partial_unwrap::do_trans == true) && (partial_unwrap::do_trans == true) ) { const uword N = (std::min)(A_n_cols, B_n_rows); T acc_real = T(0); T acc_imag = T(0); for(uword k=0; k < N; ++k) { const eT* A_colptr = A.colptr(k); // condition: A_n_rows = B_n_cols for(uword i=0; i < A_n_rows; ++i) { // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i)); const std::complex& xx = A_colptr[i]; const std::complex& yy = B.at(k, i); const T a = xx.real(); const T b = -xx.imag(); // take the conjugate const T c = yy.real(); const T d = -yy.imag(); // take the conjugate acc_real += (a*c) - (b*d); acc_imag += (a*d) + (b*c); } } acc = std::complex(acc_real, acc_imag); } return (use_alpha) ? eT(alpha * acc) : eT(acc); } //! trace of sparse object; generic version template arma_warn_unused inline typename T1::elem_type trace(const SpBase& expr) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const SpProxy P(expr.get_ref()); const uword N = (std::min)(P.get_n_rows(), P.get_n_cols()); eT acc = eT(0); if( (is_SpMat::stored_type>::value) && (P.get_n_nonzero() >= 5*N) ) { const unwrap_spmat::stored_type> U(P.Q); const SpMat& X = U.M; for(uword i=0; i < N; ++i) { acc += X.at(i,i); // use binary search } } else { typename SpProxy::const_iterator_type it = P.begin(); const uword P_n_nz = P.get_n_nonzero(); for(uword i=0; i < P_n_nz; ++i) { if(it.row() == it.col()) { acc += (*it); } ++it; } } return acc; } //! trace of sparse object; speedup for trace(A + B) template arma_warn_unused inline typename T1::elem_type trace(const SpGlue& expr) { arma_extra_debug_sigprint(); const unwrap_spmat UA(expr.A); const unwrap_spmat UB(expr.B); arma_debug_assert_same_size(UA.M.n_rows, UA.M.n_cols, UB.M.n_rows, UB.M.n_cols, "addition"); return (trace(UA.M) + trace(UB.M)); } //! trace of sparse object; speedup for trace(A - B) template arma_warn_unused inline typename T1::elem_type trace(const SpGlue& expr) { arma_extra_debug_sigprint(); const unwrap_spmat UA(expr.A); const unwrap_spmat UB(expr.B); arma_debug_assert_same_size(UA.M.n_rows, UA.M.n_cols, UB.M.n_rows, UB.M.n_cols, "subtraction"); return (trace(UA.M) - trace(UB.M)); } //! trace of sparse object; speedup for trace(A % B) template arma_warn_unused inline typename T1::elem_type trace(const SpGlue& expr) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_spmat UA(expr.A); const unwrap_spmat UB(expr.B); const SpMat& A = UA.M; const SpMat& B = UB.M; arma_debug_assert_same_size(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "element-wise multiplication"); const uword N = (std::min)(A.n_rows, A.n_cols); eT acc = eT(0); for(uword i=0; i arma_warn_unused inline typename T1::elem_type trace(const SpGlue& expr) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; // better-than-nothing implementation const unwrap_spmat UA(expr.A); const unwrap_spmat UB(expr.B); const SpMat& A = UA.M; const SpMat& B = UB.M; arma_debug_assert_mul_size(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); if( (A.n_nonzero == 0) || (B.n_nonzero == 0) ) { return eT(0); } const uword N = (std::min)(A.n_rows, B.n_cols); eT acc = eT(0); // TODO: the threshold may need tuning for complex matrices if( (A.n_nonzero >= 5*N) || (B.n_nonzero >= 5*N) ) { for(uword k=0; k < N; ++k) { typename SpMat::const_col_iterator B_it = B.begin_col_no_sync(k); typename SpMat::const_col_iterator B_it_end = B.end_col_no_sync(k); while(B_it != B_it_end) { const eT B_val = (*B_it); const uword i = B_it.row(); acc += A.at(k,i) * B_val; ++B_it; } } } else { const SpMat AB = A * B; acc = trace(AB); } return acc; } //! trace of sparse object; speedup for trace(A.t()*B); non-complex elements template arma_warn_unused inline typename enable_if2< is_cx::no, typename T1::elem_type>::result trace(const SpGlue, T2, spglue_times>& expr) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_spmat UA(expr.A.m); const unwrap_spmat UB(expr.B); const SpMat& A = UA.M; const SpMat& B = UB.M; // NOTE: deliberately swapped A.n_rows and A.n_cols to take into account the requested transpose operation arma_debug_assert_mul_size(A.n_cols, A.n_rows, B.n_rows, B.n_cols, "matrix multiplication"); if( (A.n_nonzero == 0) || (B.n_nonzero == 0) ) { return eT(0); } const uword N = (std::min)(A.n_cols, B.n_cols); eT acc = eT(0); if( (A.n_nonzero >= 5*N) || (B.n_nonzero >= 5*N) ) { for(uword k=0; k < N; ++k) { typename SpMat::const_col_iterator B_it = B.begin_col_no_sync(k); typename SpMat::const_col_iterator B_it_end = B.end_col_no_sync(k); while(B_it != B_it_end) { const eT B_val = (*B_it); const uword i = B_it.row(); acc += A.at(i,k) * B_val; ++B_it; } } } else { const SpMat AtB = A.t() * B; acc = trace(AtB); } return acc; } //! trace of sparse object; speedup for trace(A.t()*B); complex elements template arma_warn_unused inline typename enable_if2< is_cx::yes, typename T1::elem_type>::result trace(const SpGlue, T2, spglue_times>& expr) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const unwrap_spmat UA(expr.A.m); const unwrap_spmat UB(expr.B); const SpMat& A = UA.M; const SpMat& B = UB.M; // NOTE: deliberately swapped A.n_rows and A.n_cols to take into account the requested transpose operation arma_debug_assert_mul_size(A.n_cols, A.n_rows, B.n_rows, B.n_cols, "matrix multiplication"); if( (A.n_nonzero == 0) || (B.n_nonzero == 0) ) { return eT(0); } const uword N = (std::min)(A.n_cols, B.n_cols); eT acc = eT(0); // TODO: the threshold may need tuning for complex matrices if( (A.n_nonzero >= 5*N) || (B.n_nonzero >= 5*N) ) { for(uword k=0; k < N; ++k) { typename SpMat::const_col_iterator B_it = B.begin_col_no_sync(k); typename SpMat::const_col_iterator B_it_end = B.end_col_no_sync(k); while(B_it != B_it_end) { const eT B_val = (*B_it); const uword i = B_it.row(); acc += std::conj(A.at(i,k)) * B_val; ++B_it; } } } else { const SpMat AtB = A.t() * B; acc = trace(AtB); } return acc; } //! @}