// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_diagmat //! @{ template inline void op_diagmat::apply(Mat& out, const Op& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; if(is_Mat::value) { // allow detection of in-place operation const unwrap U(X.m); const Mat& A = U.M; if(&out != &A) // no aliasing { const Proxy< Mat > P(A); op_diagmat::apply(out, P); } else // we have aliasing { const uword n_rows = out.n_rows; const uword n_cols = out.n_cols; if((n_rows == 1) || (n_cols == 1)) // create diagonal matrix from vector { const eT* out_mem = out.memptr(); const uword N = out.n_elem; Mat tmp(N,N, arma_zeros_indicator()); for(uword i=0; i P(X.m); if(P.is_alias(out)) { Mat tmp; op_diagmat::apply(tmp, P); out.steal_mem(tmp); } else { op_diagmat::apply(out, P); } } } template inline void op_diagmat::apply(Mat& out, const Proxy& P) { arma_extra_debug_sigprint(); const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); const uword n_elem = P.get_n_elem(); if(n_elem == 0) { out.reset(); return; } const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1); if(P_is_vec) { out.zeros(n_elem, n_elem); if(Proxy::use_at == false) { typename Proxy::ea_type Pea = P.get_ea(); for(uword i=0; i < n_elem; ++i) { out.at(i,i) = Pea[i]; } } else { if(n_rows == 1) { for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(0,i); } } else { for(uword i=0; i < n_elem; ++i) { out.at(i,i) = P.at(i,0); } } } } else // P represents a matrix { out.zeros(n_rows, n_cols); const uword N = (std::min)(n_rows, n_cols); for(uword i=0; i inline void op_diagmat::apply(Mat& out, const Op< Glue, op_diagmat>& X) { arma_extra_debug_sigprint(); op_diagmat::apply_times(out, X.m.A, X.m.B); } template inline void op_diagmat::apply_times(Mat& actual_out, const T1& X, const T2& Y, const typename arma_not_cx::result* junk) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::elem_type eT; const partial_unwrap UA(X); const partial_unwrap UB(Y); const typename partial_unwrap::stored_type& A = UA.M; const typename partial_unwrap::stored_type& B = UB.M; arma_debug_assert_trans_mul_size< partial_unwrap::do_trans, partial_unwrap::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); const bool use_alpha = partial_unwrap::do_times || partial_unwrap::do_times; const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0); const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; // check if the multiplication results in a vector if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == false) ) { if((A_n_rows == 1) || (B_n_cols == 1)) { arma_extra_debug_print("trans_A = false; trans_B = false; vector result"); const Mat C = A*B; const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i::do_trans == true ) && (partial_unwrap::do_trans == false) ) { if((A_n_cols == 1) || (B_n_cols == 1)) { arma_extra_debug_print("trans_A = true; trans_B = false; vector result"); const Mat C = trans(A)*B; const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i::do_trans == false) && (partial_unwrap::do_trans == true ) ) { if((A_n_rows == 1) || (B_n_rows == 1)) { arma_extra_debug_print("trans_A = false; trans_B = true; vector result"); const Mat C = A*trans(B); const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i::do_trans == true ) && (partial_unwrap::do_trans == true ) ) { if((A_n_cols == 1) || (B_n_rows == 1)) { arma_extra_debug_print("trans_A = true; trans_B = true; vector result"); const Mat C = trans(A)*trans(B); const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i tmp; Mat& out = (is_alias) ? tmp : actual_out; if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == false) ) { arma_extra_debug_print("trans_A = false; trans_B = false; matrix result"); out.zeros(A_n_rows, B_n_cols); const uword N = (std::min)(A_n_rows, B_n_cols); for(uword k=0; k < N; ++k) { eT acc1 = eT(0); eT acc2 = eT(0); const eT* B_colptr = B.colptr(k); // condition: A_n_cols = B_n_rows uword j; for(j=1; j < A_n_cols; j+=2) { const uword i = (j-1); const eT tmp_i = B_colptr[i]; const eT tmp_j = B_colptr[j]; acc1 += A.at(k, i) * tmp_i; acc2 += A.at(k, j) * tmp_j; } const uword i = (j-1); if(i < A_n_cols) { acc1 += A.at(k, i) * B_colptr[i]; } const eT acc = acc1 + acc2; out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } else if( (partial_unwrap::do_trans == true ) && (partial_unwrap::do_trans == false) ) { arma_extra_debug_print("trans_A = true; trans_B = false; matrix result"); out.zeros(A_n_cols, B_n_cols); const uword N = (std::min)(A_n_cols, B_n_cols); for(uword k=0; k < N; ++k) { const eT* A_colptr = A.colptr(k); const eT* B_colptr = B.colptr(k); // condition: A_n_rows = B_n_rows const eT acc = op_dot::direct_dot(A_n_rows, A_colptr, B_colptr); out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } else if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == true ) ) { arma_extra_debug_print("trans_A = false; trans_B = true; matrix result"); out.zeros(A_n_rows, B_n_rows); const uword N = (std::min)(A_n_rows, B_n_rows); for(uword k=0; k < N; ++k) { eT acc = eT(0); // condition: A_n_cols = B_n_cols for(uword i=0; i < A_n_cols; ++i) { acc += A.at(k,i) * B.at(k,i); } out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } else if( (partial_unwrap::do_trans == true ) && (partial_unwrap::do_trans == true ) ) { arma_extra_debug_print("trans_A = true; trans_B = true; matrix result"); out.zeros(A_n_cols, B_n_rows); const uword N = (std::min)(A_n_cols, B_n_rows); for(uword k=0; k < N; ++k) { eT acc = eT(0); const eT* A_colptr = A.colptr(k); // condition: A_n_rows = B_n_cols for(uword i=0; i < A_n_rows; ++i) { acc += A_colptr[i] * B.at(k,i); } out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } if(is_alias) { actual_out.steal_mem(tmp); } } template inline void op_diagmat::apply_times(Mat& actual_out, const T1& X, const T2& Y, const typename arma_cx_only::result* junk) { arma_extra_debug_sigprint(); arma_ignore(junk); typedef typename T1::pod_type T; typedef typename T1::elem_type eT; const partial_unwrap UA(X); const partial_unwrap UB(Y); const typename partial_unwrap::stored_type& A = UA.M; const typename partial_unwrap::stored_type& B = UB.M; arma_debug_assert_trans_mul_size< partial_unwrap::do_trans, partial_unwrap::do_trans >(A.n_rows, A.n_cols, B.n_rows, B.n_cols, "matrix multiplication"); const bool use_alpha = partial_unwrap::do_times || partial_unwrap::do_times; const eT alpha = use_alpha ? (UA.get_val() * UB.get_val()) : eT(0); const uword A_n_rows = A.n_rows; const uword A_n_cols = A.n_cols; const uword B_n_rows = B.n_rows; const uword B_n_cols = B.n_cols; // check if the multiplication results in a vector if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == false) ) { if((A_n_rows == 1) || (B_n_cols == 1)) { arma_extra_debug_print("trans_A = false; trans_B = false; vector result"); const Mat C = A*B; const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i::do_trans == true ) && (partial_unwrap::do_trans == false) ) { if((A_n_cols == 1) || (B_n_cols == 1)) { arma_extra_debug_print("trans_A = true; trans_B = false; vector result"); const Mat C = trans(A)*B; const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i::do_trans == false) && (partial_unwrap::do_trans == true ) ) { if((A_n_rows == 1) || (B_n_rows == 1)) { arma_extra_debug_print("trans_A = false; trans_B = true; vector result"); const Mat C = A*trans(B); const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i::do_trans == true ) && (partial_unwrap::do_trans == true ) ) { if((A_n_cols == 1) || (B_n_rows == 1)) { arma_extra_debug_print("trans_A = true; trans_B = true; vector result"); const Mat C = trans(A)*trans(B); const eT* C_mem = C.memptr(); const uword N = C.n_elem; actual_out.zeros(N,N); for(uword i=0; i tmp; Mat& out = (is_alias) ? tmp : actual_out; if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == false) ) { arma_extra_debug_print("trans_A = false; trans_B = false; matrix result"); out.zeros(A_n_rows, B_n_cols); const uword N = (std::min)(A_n_rows, B_n_cols); for(uword k=0; k < N; ++k) { T acc_real = T(0); T acc_imag = T(0); const eT* B_colptr = B.colptr(k); // condition: A_n_cols = B_n_rows for(uword i=0; i < A_n_cols; ++i) { // acc += A.at(k, i) * B_colptr[i]; const std::complex& xx = A.at(k, i); const std::complex& yy = B_colptr[i]; const T a = xx.real(); const T b = xx.imag(); const T c = yy.real(); const T d = yy.imag(); acc_real += (a*c) - (b*d); acc_imag += (a*d) + (b*c); } const eT acc = std::complex(acc_real, acc_imag); out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } else if( (partial_unwrap::do_trans == true) && (partial_unwrap::do_trans == false) ) { arma_extra_debug_print("trans_A = true; trans_B = false; matrix result"); out.zeros(A_n_cols, B_n_cols); const uword N = (std::min)(A_n_cols, B_n_cols); for(uword k=0; k < N; ++k) { T acc_real = T(0); T acc_imag = T(0); const eT* A_colptr = A.colptr(k); const eT* B_colptr = B.colptr(k); // condition: A_n_rows = B_n_rows for(uword i=0; i < A_n_rows; ++i) { // acc += std::conj(A_colptr[i]) * B_colptr[i]; const std::complex& xx = A_colptr[i]; const std::complex& yy = B_colptr[i]; const T a = xx.real(); const T b = xx.imag(); const T c = yy.real(); const T d = yy.imag(); // take into account the complex conjugate of xx acc_real += (a*c) + (b*d); acc_imag += (a*d) - (b*c); } const eT acc = std::complex(acc_real, acc_imag); out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } else if( (partial_unwrap::do_trans == false) && (partial_unwrap::do_trans == true) ) { arma_extra_debug_print("trans_A = false; trans_B = true; matrix result"); out.zeros(A_n_rows, B_n_rows); const uword N = (std::min)(A_n_rows, B_n_rows); for(uword k=0; k < N; ++k) { T acc_real = T(0); T acc_imag = T(0); // condition: A_n_cols = B_n_cols for(uword i=0; i < A_n_cols; ++i) { // acc += A.at(k,i) * std::conj(B.at(k,i)); const std::complex& xx = A.at(k, i); const std::complex& yy = B.at(k, i); const T a = xx.real(); const T b = xx.imag(); const T c = yy.real(); const T d = -yy.imag(); // take the conjugate acc_real += (a*c) - (b*d); acc_imag += (a*d) + (b*c); } const eT acc = std::complex(acc_real, acc_imag); out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } else if( (partial_unwrap::do_trans == true) && (partial_unwrap::do_trans == true) ) { arma_extra_debug_print("trans_A = true; trans_B = true; matrix result"); out.zeros(A_n_cols, B_n_rows); const uword N = (std::min)(A_n_cols, B_n_rows); for(uword k=0; k < N; ++k) { T acc_real = T(0); T acc_imag = T(0); const eT* A_colptr = A.colptr(k); // condition: A_n_rows = B_n_cols for(uword i=0; i < A_n_rows; ++i) { // acc += std::conj(A_colptr[i]) * std::conj(B.at(k,i)); const std::complex& xx = A_colptr[i]; const std::complex& yy = B.at(k, i); const T a = xx.real(); const T b = -xx.imag(); // take the conjugate const T c = yy.real(); const T d = -yy.imag(); // take the conjugate acc_real += (a*c) - (b*d); acc_imag += (a*d) + (b*c); } const eT acc = std::complex(acc_real, acc_imag); out.at(k,k) = (use_alpha) ? eT(alpha * acc) : eT(acc); } } if(is_alias) { actual_out.steal_mem(tmp); } } // // // template inline void op_diagmat2::apply(Mat& out, const Op& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const uword row_offset = X.aux_uword_a; const uword col_offset = X.aux_uword_b; const Proxy P(X.m); if(P.is_alias(out)) { Mat tmp; op_diagmat2::apply(tmp, P, row_offset, col_offset); out.steal_mem(tmp); } else { op_diagmat2::apply(out, P, row_offset, col_offset); } } template inline void op_diagmat2::apply(Mat& out, const Proxy& P, const uword row_offset, const uword col_offset) { arma_extra_debug_sigprint(); const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); const uword n_elem = P.get_n_elem(); if(n_elem == 0) { out.reset(); return; } const bool P_is_vec = (T1::is_row) || (T1::is_col) || (n_rows == 1) || (n_cols == 1); if(P_is_vec) { const uword n_pad = (std::max)(row_offset, col_offset); out.zeros(n_elem + n_pad, n_elem + n_pad); if(Proxy::use_at == false) { typename Proxy::ea_type Pea = P.get_ea(); for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = Pea[i]; } } else { if(n_rows == 1) { for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(0,i); } } else { for(uword i=0; i < n_elem; ++i) { out.at(row_offset + i, col_offset + i) = P.at(i,0); } } } } else // P represents a matrix { arma_debug_check_bounds ( ((row_offset > 0) && (row_offset >= n_rows)) || ((col_offset > 0) && (col_offset >= n_cols)), "diagmat(): requested diagonal out of bounds" ); out.zeros(n_rows, n_cols); const uword N = (std::min)(n_rows - row_offset, n_cols - col_offset); for(uword i=0; i