// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_princomp //! @{ //! \brief //! principal component analysis -- 4 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors //! tsquared_out -> Hotelling's T^2 statistic template inline bool op_princomp::direct_princomp ( Mat& coeff_out, Mat& score_out, Col& latent_out, Col& tsquared_out, const Base& X ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col s_tmp(n_cols, arma_zeros_indicator()); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; // compute the Hotelling's T-squared s_tmp.rows(0,n_rows-2) = T(1) / s_tmp.rows(0,n_rows-2); const Mat S = score_out * diagmat(Col(s_tmp)); tsquared_out = sum(S%S,1); } else { // compute the Hotelling's T-squared // TODO: replace with more robust approach const Mat S = score_out * diagmat(Col( T(1) / s)); tsquared_out = sum(S%S,1); } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); tsquared_out.set_size(n_rows); tsquared_out.zeros(); } return true; } //! \brief //! principal component analysis -- 3 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples //! latent_out -> eigenvalues of principal vectors template inline bool op_princomp::direct_princomp ( Mat& coeff_out, Mat& score_out, Col& latent_out, const Base& X ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // normalize the eigenvalues s /= std::sqrt( double(n_rows - 1) ); // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); Col s_tmp(n_cols, arma_zeros_indicator()); s_tmp.rows(0,n_rows-2) = s.rows(0,n_rows-2); s = s_tmp; } // compute the eigenvalues of the principal vectors latent_out = s%s; } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); latent_out.set_size(n_cols); latent_out.zeros(); } return true; } //! \brief //! principal component analysis -- 2 arguments version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients //! score_out -> projected samples template inline bool op_princomp::direct_princomp ( Mat& coeff_out, Mat& score_out, const Base& X ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; const unwrap_check Y( X.get_ref(), score_out ); const Mat& in = Y.M; const uword n_rows = in.n_rows; const uword n_cols = in.n_cols; if(n_rows > 1) // more than one sample { // subtract the mean - use score_out as temporary matrix score_out = in; score_out.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = (n_rows >= n_cols) ? svd_econ(U, s, coeff_out, score_out) : svd(U, s, coeff_out, score_out); if(svd_ok == false) { return false; } // project the samples to the principals score_out *= coeff_out; if(n_rows <= n_cols) // number of samples is less than their dimensionality { score_out.cols(n_rows-1,n_cols-1).zeros(); } } else // 0 or 1 samples { coeff_out.eye(n_cols, n_cols); score_out.copy_size(in); score_out.zeros(); } return true; } //! \brief //! principal component analysis -- 1 argument version //! computation is done via singular value decomposition //! coeff_out -> principal component coefficients template inline bool op_princomp::direct_princomp ( Mat& coeff_out, const Base& X ) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; typedef typename T1::pod_type T; const unwrap Y( X.get_ref() ); const Mat& in = Y.M; if(in.n_elem != 0) { Mat tmp = in; tmp.each_row() -= mean(in); // singular value decomposition Mat U; Col< T> s; const bool svd_ok = (in.n_rows >= in.n_cols) ? svd_econ(U, s, coeff_out, tmp) : svd(U, s, coeff_out, tmp); if(svd_ok == false) { return false; } } else { coeff_out.eye(in.n_cols, in.n_cols); } return true; } template inline void op_princomp::apply ( Mat& out, const Op& in ) { arma_extra_debug_sigprint(); const bool status = op_princomp::direct_princomp(out, in.m); if(status == false) { out.soft_reset(); arma_stop_runtime_error("princomp(): decomposition failed"); } } //! @}