// SPDX-License-Identifier: Apache-2.0 // // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) // Copyright 2008-2016 National ICT Australia (NICTA) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ------------------------------------------------------------------------ //! \addtogroup op_strans //! @{ //! for tiny square matrices (size <= 4x4) template inline void op_strans::apply_mat_noalias_tinysq(Mat& out, const TA& A) { const eT* Am = A.memptr(); eT* outm = out.memptr(); switch(A.n_rows) { case 1: { outm[0] = Am[0]; } break; case 2: { outm[pos::n2] = Am[pos::n2]; outm[pos::n2] = Am[pos::n2]; outm[pos::n2] = Am[pos::n2]; outm[pos::n2] = Am[pos::n2]; } break; case 3: { outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; outm[pos::n3] = Am[pos::n3]; } break; case 4: { outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; outm[pos::n4] = Am[pos::n4]; } break; default: ; } } template inline void op_strans::block_worker(eT* Y, const eT* X, const uword X_n_rows, const uword Y_n_rows, const uword n_rows, const uword n_cols) { for(uword row = 0; row < n_rows; ++row) { const uword Y_offset = row * Y_n_rows; for(uword col = 0; col < n_cols; ++col) { const uword X_offset = col * X_n_rows; Y[col + Y_offset] = X[row + X_offset]; } } } template inline void op_strans::apply_mat_noalias_large(Mat& out, const Mat& A) { arma_extra_debug_sigprint(); const uword n_rows = A.n_rows; const uword n_cols = A.n_cols; const uword block_size = 64; const uword n_rows_base = block_size * (n_rows / block_size); const uword n_cols_base = block_size * (n_cols / block_size); const uword n_rows_extra = n_rows - n_rows_base; const uword n_cols_extra = n_cols - n_cols_base; const eT* X = A.memptr(); eT* Y = out.memptr(); for(uword row = 0; row < n_rows_base; row += block_size) { const uword Y_offset = row * n_cols; for(uword col = 0; col < n_cols_base; col += block_size) { const uword X_offset = col * n_rows; op_strans::block_worker(&Y[col + Y_offset], &X[row + X_offset], n_rows, n_cols, block_size, block_size); } const uword X_offset = n_cols_base * n_rows; op_strans::block_worker(&Y[n_cols_base + Y_offset], &X[row + X_offset], n_rows, n_cols, block_size, n_cols_extra); } if(n_rows_extra == 0) { return; } const uword Y_offset = n_rows_base * n_cols; for(uword col = 0; col < n_cols_base; col += block_size) { const uword X_offset = col * n_rows; op_strans::block_worker(&Y[col + Y_offset], &X[n_rows_base + X_offset], n_rows, n_cols, n_rows_extra, block_size); } const uword X_offset = n_cols_base * n_rows; op_strans::block_worker(&Y[n_cols_base + Y_offset], &X[n_rows_base + X_offset], n_rows, n_cols, n_rows_extra, n_cols_extra); } //! Immediate transpose of a dense matrix template inline void op_strans::apply_mat_noalias(Mat& out, const TA& A) { arma_extra_debug_sigprint(); const uword A_n_cols = A.n_cols; const uword A_n_rows = A.n_rows; out.set_size(A_n_cols, A_n_rows); if( (TA::is_row) || (TA::is_col) || (A_n_cols == 1) || (A_n_rows == 1) ) { arrayops::copy( out.memptr(), A.memptr(), A.n_elem ); } else { if( (A_n_rows <= 4) && (A_n_rows == A_n_cols) ) { op_strans::apply_mat_noalias_tinysq(out, A); } else if( (A_n_rows >= 512) && (A_n_cols >= 512) ) { op_strans::apply_mat_noalias_large(out, A); } else { eT* outptr = out.memptr(); for(uword k=0; k < A_n_rows; ++k) { const eT* Aptr = &(A.at(k,0)); uword j; for(j=1; j < A_n_cols; j+=2) { const eT tmp_i = (*Aptr); Aptr += A_n_rows; const eT tmp_j = (*Aptr); Aptr += A_n_rows; (*outptr) = tmp_i; outptr++; (*outptr) = tmp_j; outptr++; } if((j-1) < A_n_cols) { (*outptr) = (*Aptr); outptr++;; } } } } } template inline void op_strans::apply_mat_inplace(Mat& out) { arma_extra_debug_sigprint(); const uword n_rows = out.n_rows; const uword n_cols = out.n_cols; if(n_rows == n_cols) { arma_extra_debug_print("op_strans::apply(): doing in-place transpose of a square matrix"); const uword N = n_rows; for(uword k=0; k < N; ++k) { eT* colptr = &(out.at(k,k)); eT* rowptr = colptr; colptr++; rowptr += N; uword j; for(j=(k+2); j < N; j+=2) { std::swap( (*rowptr), (*colptr) ); rowptr += N; colptr++; std::swap( (*rowptr), (*colptr) ); rowptr += N; colptr++; } if((j-1) < N) { std::swap( (*rowptr), (*colptr) ); } } } else { Mat tmp; op_strans::apply_mat_noalias(tmp, out); out.steal_mem(tmp); } } template inline void op_strans::apply_mat(Mat& out, const TA& A) { arma_extra_debug_sigprint(); if(&out != &A) { op_strans::apply_mat_noalias(out, A); } else { op_strans::apply_mat_inplace(out); } } template inline void op_strans::apply_proxy(Mat& out, const Proxy& P) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; const uword n_rows = P.get_n_rows(); const uword n_cols = P.get_n_cols(); if( (resolves_to_vector::yes) && (Proxy::use_at == false) ) { out.set_size(n_cols, n_rows); eT* out_mem = out.memptr(); const uword n_elem = P.get_n_elem(); typename Proxy::ea_type Pea = P.get_ea(); uword i,j; for(i=0, j=1; j < n_elem; i+=2, j+=2) { const eT tmp_i = Pea[i]; const eT tmp_j = Pea[j]; out_mem[i] = tmp_i; out_mem[j] = tmp_j; } if(i < n_elem) { out_mem[i] = Pea[i]; } } else // general matrix transpose { out.set_size(n_cols, n_rows); eT* outptr = out.memptr(); for(uword k=0; k < n_rows; ++k) { uword j; for(j=1; j < n_cols; j+=2) { const uword i = j-1; const eT tmp_i = P.at(k,i); const eT tmp_j = P.at(k,j); (*outptr) = tmp_i; outptr++; (*outptr) = tmp_j; outptr++; } const uword i = j-1; if(i < n_cols) { (*outptr) = P.at(k,i); outptr++; } } } } template inline void op_strans::apply_direct(Mat& out, const T1& X) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; // allow detection of in-place transpose if(is_Mat::value || (arma_config::openmp && Proxy::use_mp)) { const unwrap U(X); op_strans::apply_mat(out, U.M); } else { const Proxy P(X); const bool is_alias = P.is_alias(out); if(is_Mat::stored_type>::value) { const quasi_unwrap::stored_type> U(P.Q); if(is_alias) { Mat tmp; op_strans::apply_mat_noalias(tmp, U.M); out.steal_mem(tmp); } else { op_strans::apply_mat_noalias(out, U.M); } } else { if(is_alias) { Mat tmp; op_strans::apply_proxy(tmp, P); out.steal_mem(tmp); } else { op_strans::apply_proxy(out, P); } } } } template inline void op_strans::apply(Mat& out, const Op& in) { arma_extra_debug_sigprint(); op_strans::apply_direct(out, in.m); } // // // template inline void op_strans_cube::apply_noalias(Cube& out, const Cube& X) { out.set_size(X.n_cols, X.n_rows, X.n_slices); for(uword s=0; s < X.n_slices; ++s) { Mat out_slice( out.slice_memptr(s), X.n_cols, X.n_rows, false, true ); const Mat X_slice( const_cast(X.slice_memptr(s)), X.n_rows, X.n_cols, false, true ); op_strans::apply_mat_noalias(out_slice, X_slice); } } //! @}