From 76ca5f48ec30328ec0ce40ba2db5798b143bf2f9 Mon Sep 17 00:00:00 2001 From: sara Date: Sat, 18 Dec 2021 15:26:18 +0100 Subject: try to write missing part of the doku again --- doc/thesis/chapters/theory.tex | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) (limited to 'doc/thesis/chapters/theory.tex') diff --git a/doc/thesis/chapters/theory.tex b/doc/thesis/chapters/theory.tex index bc69763..0f1b13e 100644 --- a/doc/thesis/chapters/theory.tex +++ b/doc/thesis/chapters/theory.tex @@ -274,8 +274,6 @@ From a signal processing perspective \eqref{eqn:discrete-multipath-impulse-respo \subsection{Simulating multipath CIR with FIR filters} \label{sec:fractional-delay} -% TODO: cite sources - \begin{figure} \centering \begin{subfigure}{.4\linewidth} @@ -293,7 +291,7 @@ From a signal processing perspective \eqref{eqn:discrete-multipath-impulse-respo } \end{figure} -As mentioned in \ref{sec:discrete-time-model} a FIR filter can be used to simulate discrete-time models of multipath fading. But with FIR filters the delays can only be integer multiples of the sample rate. When the delays are non integer an approximation needs to be done, that is because FIR filters have a transfer function of the form +As mentioned in \ref{sec:discrete-time-model} a FIR filter can be used to simulate discrete-time models of multipath fading. But with FIR filters the delays can only be integer multiples of the sample rate. When the delays are non integer an approximation needs to be done \cite{Valimaki1995}, that is because FIR filters have a transfer function of the form \begin{equation} \label{eqn:transfer-function-fir} H(j\omega) = \sum_{n = 0}^{N} h(n) e^{-j\omega nT} \quad \text{commonly written as} \quad -- cgit v1.2.1