% !TeX program = xelatex % !TeX encoding = utf8 \documentclass[xetex, onlymath, handout]{beamer} \usefonttheme{serif} \usetheme{hsr} % use lmodern for math \usepackage{lmodern} %% Pretty figures \usepackage{circuitikz} % Electric diagrams \usepackage{pgfplots} % Pretty plots \usepackage{tikz} % Pretty drawings \usepackage{tikz-3dplot} % More dimensions! \usetikzlibrary{ external, calc, positioning, backgrounds, decorations.pathreplacing, calligraphy, decorations.markings, matrix, arrows, patterns, } \pgfplotsset{compat=newest} % math packages \usepackage{amsmath} \usepackage{amssymb} \usepackage[T1]{fontenc} \usepackage{beramono} % monospaced \usepackage{roboto} % other \renewcommand*\familydefault{\sfdefault} % metadata \title{Multipath Fading Demonstration Platform using Software Defined Radio} \author{Naoki Sean Pross \and Sara Cinzia Halter} \date{23. December 2021} \institute[OST]{OST FHO Campus Rapperswil} \AtBeginSection[] { \begin{frame}{Table of Contents} \tableofcontents[currentsection] \end{frame} } \begin{document} \frame{ \maketitle } \section{Multipath Fading} \begin{frame}{Multipath Fading sketch} \begin{figure} \centering \input{figures/tikz/multipath-sketch} \end{figure} \begin{equation} \label{eqn:multipath-impulse-response} h(\tau, t) = \sum_k c_k(t) \delta(\tau - \tau_k(t)), \end{equation} \end{frame} \begin{frame}{Spectrum of a multipath fading channel} \begin{figure} \centering \resizebox{\linewidth}{!}{ \input{figures/tikz/multipath-frequency-response-plots} % \skelfig[width = .8 \linewidth, height = 3cm]{} } \end{figure} \begin{equation} H(f, t) = \int_\mathbb{R} \sum_k c_k(t) \delta(\tau - \tau_k(t)) e^{-2\pi jf\tau} \, d\tau = \sum_k c_k(t) e^{-2\pi jf \tau_k(t)}. \end{equation} \end{frame} \subsection{Discrete-time model} \begin{frame}{Discrete-time model} \begin{figure} \centering \input{figures/tikz/tapped-delay-line} \end{figure} \begin{equation} h_l(m) = \sum_k c_k(mT) \sinc(l - \tau(mT)/T) \end{equation} \end{frame} \subsection{Statistical model} \begin{frame}[fragile]{Statistical model} \begin{columns} \begin{column}{.5\linewidth} \begin{itemize} \item Raileigh distribution (NLOS) \item Rician distribution (LOS) \end{itemize} \end{column} \begin{column}{.5\linewidth} \begin{figure} \centering \resizebox{!}{4cm}{% \input{figures/tikz/ring-of-scattering-objects} } \end{figure} \end{column} \end{columns} \end{frame} \section{Implementation} %TODO: Mabe picture Hardware, Bicture GR. \begin{frame}{Tools} \begin{columns} \begin{column}{.5\linewidth} \begin{itemize} \item Software Stack \begin{itemize} \item GNU Radio \item Dear PyGUI \end{itemize} \item Hardware \begin{itemize} \item USRP B210 \end{itemize} \end{itemize} \end{column} \begin{column}{.5\linewidth} \begin{figure} \centering \includegraphics[frame, width = \linewidth]{figures/screenshots/gui_screenshot} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Blockdiagram} \begin{figure} \centering \resizebox{.9\linewidth}{!}{ \input{figures/tikz/overview} } \end{figure} \end{frame} \subsection{Transmitter and Receiver chain} \begin{frame}{Transmitter chain} \end{frame} \begin{frame}{Receiver chain} \end{frame} \subsection{Channel model} \begin{frame}{Discrete-time model} \begin{figure} \centering \input{figures/tikz/qpsk-simulations-static} \end{figure} the 1 tap model the fading tap was \(0.2\delta(n - 0.25)\), and for the 4 tap model uses \(0.2 \delta(n - 0.25) + 0.08 \delta(n - 3.25) + 0.5 \delta(n - 4) + 0.4 \delta(n - 6.3)\). In both cases the delays are given in samples. \end{frame} \begin{frame}{Statistical model} \end{frame} \section{Conclusion} \begin{frame}{Further steps} \end{frame} \section{Measurement/Demonstration} %%Tools \end{document} % vim:et:ts=2:sw=2:wrap:nolinebreak: