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Effect of Channel Estimation Error on M-QAM
BER Performance in Rayleigh Fading
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Abstract—We determine the bit-error rate (BER) of multilevel
quadrature amplitude modulation (M-QAM) in flat Rayleigh
fading with imperfect channel estimates. Despite its high spectral
efficiency, M-QAM is not commonly used over fading channels
because of the channel amplitude and phase variation. Since
the decision regions of the demodulator depend on the channel
fading, estimation error of the channel variation can severely
degrade the demodulator performance. Among the various fading
estimation techniques, pilot symbol assisted modulation (PSAM)
proves to be an effective choice. We first characterize the dis-
tribution of the amplitude and phase estimates using PSAM.
We then use this distribution to obtain the BER of M-QAM as
a function of the PSAM and channel parameters. By using a
change of variables, our exact BER expression has a particularly
simple form that involves just a few finite-range integrals. This
approach can be used to compute the BER for any value ofM .
We compute the BER for 16-QAM and 64-QAM numerically and
verify our analytical results by computer simulation. We show
that for these modulations, amplitude estimation error leads to a
1-dB degradation in average signal-to-noise ratio and combined
amplitude-phase estimation error leads to 2.5-dB degradation for
the parameters we consider.

Index Terms— Channel estimation error, M-QAM, PSAM,
Rayleigh fading.

I. INTRODUCTION

DUE TO its high spectral efficiency, multilevel quadrature
amplitude modulation (M-QAM) is an attractive modula-

tion technique for wireless communications. M-QAM has been
recently proposed and studied for various nonadaptive [1]–[3]
and adaptive [4], [5] wireless systems. However, the severe
amplitude and phase fluctuations inherent to wireless channels
significantly degrade the bit-error rate (BER) performance of
M-QAM. That is because the demodulator must scale the
received signal to normalize channel gain so that its decision
regions correspond to the transmitted signal constellation. This
scaling process is called automatic gain control (AGC) [6].
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If the channel gain is estimated in error, then the AGC
improperly scales the received signal, which can lead to
incorrect demodulation even in the absence of noise. Thus,
reliable communication with M-QAM requires accurate fading
compensation techniques at the receiver.

Channel sounding in M-QAM demodulation is a very ef-
fective technique to precisely compensate for channel ampli-
tude and phase distortion. Channel sounding by pilot symbol
assisted modulation (PSAM) has been studied by several
authors [7]–[10] and proven to be effective for Rayleigh fading
channels. Previous studies on the performance of M-QAM
with PSAM were primarily based on computer simulation and
experimental implementation [7], [9], [10]. The only analytical
result is a tight upper bound on the symbol-error rate for 16-
QAM [8]. These results do not provide an easy method to
evaluate the performance tradeoffs for different system design
parameters.

Some work has been done on the AGC error problem based
on various models [11], [12]. In [11], a simple model has
the fading estimate related to the fading by a single
parameter , where is
the average value of the fading. When is 0, ,
which corresponds to perfect AGC. When is 1, ,
corresponding to no AGC. Imperfect AGC is modeled by
appropriate values of . However, this model cannot be
used to determine the performance of M-QAM using PSAM
because the PSAM parameters cannot be mapped to. In
[12], the authors obtain the distribution of a “final noise” that
includes the multiplicative fading distortion due to imperfect
AGC as well as additive white Gaussian noise (AWGN). Even
though the approach in [12] is valid for any linearly modulated
signal over flat Ricean fading channels, no explicit BER
expression is given for M-QAM with channel estimation error.

In this paper, we provide a general approach to calculate
the exact BER of M-QAM with PSAM in flat Rayleigh fading
channels. In particular, we derive the exact BER of 16-QAM
and 64-QAM using PSAM. These BER expressions are given
by a few finite-range integrals, which are easy to calculate
numerically using standard mathematical packages such as
Mathematica. The BER of M-QAM with larger constellation
sizes can be derived in a similar manner. We also obtain the
BER using computer simulations, and these simulated results
match closely with those obtained from our analysis.

The remainder of this paper is organized as follows. In
Section II, we outline the communication system and channel
models. In Section III, we describe the PSAM system and
derive two parameters later used in the BER expression of
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TABLE I
LIST OF SYMBOLS

Fig. 1. System block diagram.

M-QAM. In Section IV, we derive the exact BER of M-
QAM with imperfect AGC. We start with conditional BER and
obtain the final BER in terms of finite-range integrals. We first
consider the amplitude estimation error only and then go on
to include both the amplitude and the phase estimation errors.
Numerical BER results from both analysis and simulation are
also presented in this section.

For reference, Table I summarizes the symbols we use to
represent key parameters throughout the paper.

II. SYSTEM AND CHANNEL MODELS

A block diagram of the PSAM communication system is
shown in Fig. 1. Pilot symbols are periodically inserted into
the data symbols at the transmitter so that the channel-induced
envelope fluctuation and phase shift can be extracted and
interpolated at the channel estimation stage. These estimates
are given by and , respectively. The received signal goes
through the AGC, which compensates for the channel fading
by dividing the received signal by the fading estimate .
The output from the AGC is then fed to the decision device
to obtain the demodulated data bits.

We assume a slowly-varying flat-fading Rayleigh channel at
a rate slower than the symbol rate, so that the channel remains
roughly constant over each symbol duration. The Rayleigh
fading amplitude follows the probability density function
(pdf)

(1)

where is the average fading power. The joint
distributions and will be derived in Section III-
A, after we describe the details of PSAM.

Fig. 2. M-QAM: modulation and demodulation.

Fig. 3. 16-QAM constellation with Gray encoding.

Fig. 2 shows the modulation and demodulation of square
M-QAM. At the modulator, the data bit stream is split into
the inphase (I) and quadrature (Q) bit streams. The I and Q
components together are mapped to complex symbols using
Gray coding. The demodulator splits the complex symbols
into I and Q components and puts them into a decision
device (demapper), where they are demodulated independently
against their respective decision boundaries. Demodulation of
the I and Q bit streams is identical due to symmetry. Average
BER of M-QAM is then equal to the BER of either the I or the
Q component. Figs. 3 and 4 show the constellation, decision
boundaries, and bit-mapping for square 16-QAM and square
64-QAM, respectively [1]. For 16-QAM, the first and third
bits are passed to the inphase bit stream, while the second
and fourth bits are passed to the quadrature bit stream. The
separate I and Q components are then each Gray-encoded by
assigning the bits 01, 00, 10, and 11 to the levels
and respectively, as shown by the first line in Fig. 5.
In our BER calculation, we will compute the BER for each
bit separately. Thus, we need the individual decision regions
for each bit. In Fig. 5, the decision region boundaries for the
most significant bit (MSB) and the least significant bit (LSB)
are shown in lines 2 and 3, respectively, where MSB and LSB
refer to the left and right bits, respectively, in the first line
of the figure. For 64-QAM, the first, third, and fifth bits are
passed to the inphase bit stream, while the remaining bits are
passed to the quadrature bit stream. These individual I and Q
components are then each Gray-encoded by assigning the bits
011, 010, 000, 001, 101, 100, 110, and 111 to the levels
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Fig. 4. 64-QAM constellation with Gray encoding.

Fig. 5. 16-QAM bit-by-bit demapping.

and , respectively, as shown
by the first line in Fig. 6. In this figure, the second, third, and
fourth lines show the decision region boundaries for the MSB,
mid bit, and LSB corresponding to the left bit, the middle bit,
and the right bit, respectively, in the first line of the figure. The
decision regions for demodulation (demapping) of either the
I or the Q component and its corresponding bits are shown
in Figs. 5 and 6 for 16-QAM and 64-QAM, respectively.
Although our calculations below only apply to symmetrical
M-QAM constellations with Gray bit mapping, our methods
can be extended to nonsymmetrical constellations and other bit
mappings that can be decomposed into I and Q components.

III. PSAM

A. PSAM System Description

References [7], [9], and [10] provide detailed descriptions
of the PSAM method. In short, pilot symbols are periodically
inserted into the data symbols to estimate the fading. Specif-
ically, the data is formatted into frames of symbols, with
the first symbol in each frame used for the pilot symbol, as
shown in Fig. 7.

After matched filtering and sampling with perfect symbol
timing at the rate of , a baseband -spaced discrete-time
complex-valued signal is obtained as

(2)

The sequence represents complex M-QAM and pilot
symbols. The sequence represents the fading, which for
Rayleigh channels, is a complex zero-mean Gaussian random
variable, and is AWGN with variance . At the
receiver, channel fading at the pilot symbol times is extracted
by dividing the received signal by the known pilot symbols
denoted by

(3)
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Fig. 6. 64-QAM bit-by-bit demapping.

Fig. 7. Frame format.

where is the fading at the pilot symbol in theth frame.
The receiver estimates the fading at theth data symbol time
in the th frame from the nearest pilot symbols, i.e., the
receiver uses pilot symbols from previous frames,
the pilot symbol from the current frame, and the pilot symbols
from the subsequent frames, as illustrated in Fig. 8.
Thus, the fading estimate is given by

(4)

where is the data symbol index within each
frame, and are real numbered interpolation coefficients, as
we explain in more detail in Section III-C.

Since the estimated fadingis a weighted sum of zero-mean
complex Gaussian random variables, it is also a zero-mean
complex Gaussian random variable. Thus, the amplitude

and its estimate have a bivariate Rayleigh
distribution given by

(5)

where ,
is the correlation coefficient between and

and is the zeroth-order modified Bessel

Fig. 8. Fading interpolation in PSAM.

function. The phase and its estimate have a joint distribu-
tion similar to [13, eq. (8.106)] given by

(6)

where and is the same as that in (5).

B. Derivation of and

The joint distribution of and given by (5) contains three
parameters: and . The parameter also appears in the
joint distribution of and given by (6). It turns out that and

are needed in the final BER expression. For PSAM,
these parameters can be expressed in closed form in terms of
the PSAM and channel parameters, namely the interpolation
size , frame size , average signal-to-noise ratio (SNR), and
normalized Doppler spread .

The complex fading can be expressed as .
For Rayleigh channels, and are zero-mean inde-
pendent Gaussian random processes, with autocorrelation and
cross-correlation functions given by [14]

(7)
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For . Define the
covariance matrix as

(8)

Using (7), it can be shown that

(9)

where is the time difference between fading at two pilot
symbols and

(10)

with the frame size and the symbol duration.
We now obtain expressions forand the correlation coeffi-

cient in terms of the PSAM and channel parameters. From
(3) and (4)

(11)

Note that in the right-hand side of the above equation, the
indices and are dropped for simplicity of notation since

is a stationary process. Thus, is also Rayleigh
distributed, with average power

(12)

where is a row vector and
is the noise variance.

Hence

(13)

where is the normalized covariance matrix.
Consider the case where the pilot symbol energy is equal to
the average data symbol energy. Thus

(14)

Let us define the average SNR per symbolas

(15)

The corresponding average SNR per bit is then
. Then

(16)

Since and follow the Rayleigh pdf as given by (1), it is
easily shown that the standard deviations ofand are
and , respectively. Moreover, the covariance betweenand

is given by (17), shown at the bottom of the page. Thus

(18)

where

(19)

is the normalized covariance between the fading at data symbol
and at pilot symbol , and . Since the

estimation coefficients and depend on the position
within a frame, and need to be averaged over each data
symbol position within a frame.

(17)
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C. Sinc Interpolator

Several interpolation methods have been proposed for
PSAM, including low-pass sinc interpolation [7], Cavers’
optimal Wiener interpolator [8], and low-order Gaussian
interpolation [9]. In [7], the authors show that for the same
PSAM parameters ( and ) and channel characteristics (
and ) that we use in our study, the sinc interpolator
achieves nearly the same BER performance as Cavers’
optimal Wiener interpolator but with much less complexity.
Therefore, we use sinc interpolation in our calculations and
simulations for its simplicity and near-optimum performance.
The interpolation coefficients are computed from the sinc
function

(20)

where and .
A Hamming window is applied to the sinc function to smooth
the abrupt truncation of rectangular windowing.

IV. BER PERFORMANCE

We first consider the effect of amplitude estimation error
on the average BER performance of M-QAM over Rayleigh
fading channels. The analysis is then extended to include
the effects of both amplitude and phase estimation errors.
We compute the BER numerically, based on our analysis for
particular PSAM and channel parameters, and compare these
results with computer simulation results.

A. Amplitude Estimation Error

1) Conditional BER: Consider first 16-QAM. For each bit
stream, the received signal is , where

is the fading, and is the noise with
variance . Given the fading amplitude estimate
and perfect phase estimation , the input to the decision
device after scaling by the AGC is then

(21)

We calculate the conditional BER bit by bit for the inphase
signal component as shown in Fig. 5. By symmetry, the BER
for the quadrature component will be the same. Take the MSB
as an example. A bit error occurs when the signal representing
bit 1, i.e., , falls into the decision
boundaries of bit 0, and vice versa. From (21), the noise
standard deviation is . Therefore, the bit-error probability
of the MSB conditioned on and is

(22)

Similarly, the conditional bit-error probability of the LSB is
given by1

(23)

Since each bit is mapped to the MSB or the LSB with
equal probability, and the error probabilities for the inphase
and quadrature components are the same, the average BER
conditioned on and is thus

(24)

2) Average BER:The BER of 16-QAM is obtained by
averaging the conditional BER over the joint distribution given
in (5)

(25)

Note that the conditional probability in (24) is a weighted sum
of , with and being integer multiples of .
Define integral as

(26)

Make the following change of variables:

.
The corresponding Jacobian transformation is

(27)

Then becomes

(28)

where .
Defining

(29)

and using integration by parts, it can be shown that

(30)

1The 2d terms in this expression are not multiplied by(�=�̂), since only
the received signal is scaled, not the decision boundary. This is equivalent to
scaling the boundary and keeping the received signal unchanged.
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TABLE II
COEFFICIENTS IN THE BER OF 16-QAM (AMPLITUDE ERROR ONLY)

Now setting and using the following integral represen-
tation of [15]

(31)

we get that can be written as (32), shown at the
bottom of the page. The average symbol energy of 16-QAM is

(33)

Thus

(34)

where is the average SNR per symbol. So,
after factoring out can be rewritten in terms
of and as in (35), shown at the bottom of the
page. Therefore

(36)

where the coefficients and are listed in Table II.
3) Higher Level M-QAM: The BER of higher level M-

QAM can be calculated in a similar way, which will result in
more terms in the summation. Fig. 6 shows the demodulation
of 64-QAM bit by bit. Following a similar derivation as in
16-QAM, we obtain the final BER expression

(37)

where the coefficients and are listed in Table III.

TABLE III
COEFFICIENTS IN THEBER OF 64-QAM (AMPLITUDE ERROR ONLY)

B. Amplitude and Phase Estimation Error

From (6), we can derive the pdf of the phase estimation
error , to be

(38)

where . With the phase error, I and Q channels
interfere with each other, and (21) becomes

(39)

where and are the inphase and quadrature components
of the complex signal mapping. For 16-QAM,

. The conditional error probability in (24) is
therefore conditioned further on and . However, only
positive values of need to be considered due to symmetry.
Taking the above into account, (35) becomes

(40)

Thus (36) becomes

(41)

(32)

(35)
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TABLE IV
COEFFICIENTS IN THEBER OF 16-QAM (AMPLITUDE AND PHASE ERROR)

Fig. 9. 16-QAM BER performance.r = 1.

where the coefficients and are listed in
Table IV.

C. Numerical and Simulation Examples

Figs. 9 and 10 show the effect of the amplitude estimation
error as a function of the correlation coefficienton the BER
of 16-QAM and 64-QAM, respectively, with fixed
at 1.2 These figures indicate that an error floor occurs as
decreases from 1. This result is expected, since asdecreases
from 1, the fading estimate and the corresponding AGC
exhibit increasing error. Equivalently, the decision regions for
demodulation are increasingly offset, which can lead to errors
even in the absence of noise, i.e., an error floor. Note that

, given by (18), is a function of and . Thus,
the values of these parameters must be chosen so thatis
sufficiently close to 1 in order to meet the BER target. In
Table V, we compute from (18) for a range of and

values. As expected, increases toward 1 as the average
SNR per bit and the interpolation size for the PSAM
estimate ( ) increase, and as the frame size decreases.
will also increase as the normalized Doppler decreases.

Figs. 11 and 12 show the BER performance of 16-QAM and
64-QAM, respectively, as a function of the average SNR per
bit . From Table V, we see that for the parameters used in

2For practical values ofb; K; L; andfdTs; r is very close to 1 and has
little effect on BER.

Fig. 10. 64-QAM BER performance.r = 1.

TABLE V
VALUES OF r AND � FOR fdTs = 0:03

Fig. 11. BER of 16-QAM with PSAM.L = 15; K = 30; and
fdTs = 0:03.

these calculations, for 16-QAM, is equal to 0.93 at
dB, 0.9976 at dB, and 0.999 91 at dB.
For 64-QAM, is equal to 0.95 at dB, 0.9984 at

dB, and 0.999 94 at dB. Thus, Figs. 11 and
12 exhibit no error floor, since we see from Figs. 9 and 10
that these values of are sufficiently close to 1 at each
to avoid this floor. Figs. 11 and 12 indicate that amplitude
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Fig. 12. BER of 64-QAM with PSAM.L = 15; K = 30; and
fdTs = 0:03.

estimation error leads to a 1-dB degradation in, as shown
in the dashed line, and that combined amplitude and phase
error leads to a 2.5-dB degradation, as shown by stars, for
the parameters we use. Computer simulations were also done
to verify the analytical results. The simulation followed the
system block diagram in Fig. 1, except that the pulse shaping
and the matched filter were omitted since we assumed matched
filtering with zero intersymbol interference and perfect symbol
timing at the receiver. The Rayleigh fading was simulated
using the model described in [14, Sec. 2.3.2]. Simulation
results closely match the analysis. Note that power loss due
to insertion of the pilot symbols ( dB) is
not factored into the calculations for Figs. 11 and 12, but it is
easily included by appropriate scaling of the-axis.

V. CONCLUSION

We have studied the effect of fading amplitude and phase
estimation error on the BER of 16-QAM and 64-QAM with
PSAM over flat Rayleigh fading channels. The results are
obtained by averaging the conditional BER over the joint
distribution of the fading and its estimate. The exact BER
expressions are given by finite-range integrals as a function
of the PSAM parameters. We find that for 16-QAM and 64-
QAM, amplitude estimation error yields approximately 1 dB of
degradation in average SNR, and combined amplitude-phase
estimation error yields a 2.5-dB degradation for the system
parameters we considered. Our results allow the designers of
M-QAM with PSAM to easily choose system parameters to
meet their performance requirements under reasonable channel
Doppler conditions.
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