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ABSTRACT 
A polarimetric synthetic aperture radar 

(SAR) forms a complex vector-valued image 
where each pixel comprises the polarization- 
dependent reflectivity of a portion of a target or 
scene. The most common statistical model for 
this type of image is the zero-mean, circularly- 
symmetric, multivariate, complex Gaussian 
model. A logical generalization of this model is a 
circularly-symmetric, multivariate, complex 
Rician model which results from having a 
nonzem-mean complex target reflectivity. Direct 
maximum-likelihood estimation of the Rician 
model parameters is infeasible, since setting 
derivatives equal to zero results in an intractable 
system of coupled nonlinear equations. The 
contribution of this paper is a complete iterative 
solution to the Rician parameter estimation 
problem by means of the EM (expectation- 
maximization) algorithm. 

1. PROBLEM STATEMENT 
A polarimetric SAR separately transmits 

horizontally and vertically polarized pulses and the 
receiver separately measures the horizontally and 
vertically polarized components of the returns, 
which after processing yield four complex-valued 
SAR images: HH, HV, VH, and VV [l]. 
Reciprocity implies that the VH and HV images 
should be equal, so the resulting polarimetric SAR 
image at a particular pixel can be denoted by a 
three-component complex vector, x. In turn x 
can be modelled as the three-component complex 
reflectivity, y, phase-shifted by an amount 
corresponding to the two-way range between the 
radar and the resolution cell, 

x = y-exp(i$) . (1) 

Given the typically great disparity between the 
range resolution of the SAR and its wavelength it 
is usual to model the phase shift, $, as random 
and uniformly distributed over [0,2x]. The most 

common model for polarimetric S A R  assumes that 
the reflectivity, y, is zero-mean and Gaussian 
distributed which results in x having the zero- 
mean, circularly-symmetric, multivariate, complex 
Gaussian distribution [2]. The underlying 
assumptions about reflectivity are consistent with 
having a scattering surface that is rough on a scale 
comparable to the size of the resolution cell [3]. 

In cases where the resolution cell is 
dominated by one large scatterer a more 
reasonable model would assume that the 
reflectivity has a nonzero mean. One could still 
assume the presence of a zero-mean Gaussian 
component in the reflectivity to account for small 
scatterers. With this revised assumption the 
conditional density of the image is circularly- 
symmetric Gaussian with a nonzero mean, 

=- exp { -[X-Aei+]HK-l[X-Aei@] } , 
lcddetK 

where A and K are the mean and the covariance 
matrix respectively of y, d is the dimension 
(typically three), and the superscript "HI' denotes 
"conjugate-transpose". Multiplying (2) by the 
probability density for + and integrating gives the 
marginal density for x which is not Gaussian, 

1 H 1  H 1  p,(X) = -exp(- X K' X - A K- A )  
7cddetK 

*I,(21AHK-'XI), (3) 

and Io(z) is the modified Bessel function of the 
first kind of order zero. It is convenient to refer to 
this density as circularly-symmetric, multivariate, 
complex Rician, recalling that the conventional 
Rician density describes the magnitude of x for 
the scalar case (d=l) [4]. 
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To understand the relation between this 
new probability density and the classical Rician 
density, consider the density (3) for the case d=l, 
which is the joint probability density for the real 
and imaginary parts of the complex scalar, x, 

1 
7CK 

p , ( ~ >  = -exp ( - ( I X I ~ + I A I ~ ) / K )  

-10(21AIIXl/K). (4) 

Finding the joint probability density for the 
magnitude and phase of x (e.g. such that Re{ x} = 
pcose and Im{x}=psine) by standard techniques, 
and integrating over e gives the marginal 
probability density for the magnitude of x, which 
is the classical Rician density, 

The application of the Rician model to 
polarimetric SAR involves choosing the model 
parameters so that the model best represents the 
pixels that comprise some portion of the image. 
More formally, given N statistically-independent 
realizations of the random vector x, X = {x,, 
IlnSN} (note that both the reflectivities and the 
translational phase shifts are statistically 
independent from pixel-to-pixel) the problem is to 
find the values of A and K that maximize the joint 
likelihood function according to the probability 
density (3), 

N 

logp,(X) = { -dlogn - logdetK 
n=l 

-X,K H -1 X,-A H K -1 A 

+ log Io( 2 I AHK-'X, 1) } . (6) 

Setting derivatives of the joint log-likelihood with 
respect to the parameters equal to zero yields a set 
of coupled equations with no closed-form 
solution. It turns out that the EM algorithm [5] is 
a tractable way to find the ML estimates. 

2. EM SOLUTION FOR ML 
PARAMETER ESTIMATES 

The application of the EM algorithm to this 
problem is based on the fact that possession of the 
unobserved (hidden) random phases would make 
this an easy estimation problem. The EM 
algorithm is explicitly iterative. It begins with an 
initial guess for the mean and the covariance, A. 
and KO. At the beginning of the t-th iteration, the 
current estimates are At_1 and Kt-l. The t-th 
iteration consists of an E-step followed by an M- 
step, both of which can be performed analytically. 

The E-step involves taking the expectation 
of the joint log-likelihood of the observed and the 
hidden data, conditioned on the observed data and 
on the current parameter estimates. For the 
problem at hand the hidden random variable 
associated with the n-th pixel is $,, and its 
conditional probability density (applying Bayes' 
rule) is 

(7) 

Performing the E-step gives 

N =c [-log(21c)-dlog1c - log(detK) - XfK-lX, 
n=l 

where is a scalar-valued weight, 

, 

1 SnlN. (9) 
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and Il(z) is the modified Bessel function of the 
first kind of order one. 

The M-step involves choosing A and K to 
maximize the conditional expectation (8), resulting 
in the following updated estimates: 

lI=l 

or 
N 

components of A, and then taking the expectation 
gives 

0 = -2K"A 

1 
K, = X,X; - .,A:. 

The EM algorithm produces a sequence of 
estimates whose likelihood is non-decreasing, and 
convergence to at least a local maximum is 
guaranteed. 

3. COMMENTS AND 
INTERPRETATION 

As usual, the EM iterative estimator 
combines both intuitively obvious as well as more 
subtle features. Consider first the A update (lo), 
which is equal to the average of the weighted 
measurements. The phase associated with the 
complex-valued scalar weight, ht-l(n), is equal to 
the conditional maximum a-posteriori estimate for 
the random phase, $n, based on the current 
parameter estimates. (The MAP estimate for the 
phase maximizes the conditional density (7).) 
Thus EM is cleverly estimating the hidden random 
phase and is attempting to compensate for it. 

The magnitude of the weight, equal to 
Il(z)/Io(z), is more difficult to explain. The ratio 
of Bessel functions increases monotonically from 
zero to one as z goes from zero to infinity, and it 
serves to compensate for a bias that would 
otherwise occur. In fact it can be shown that the 
expectation of A, , conditioned on At-l and on 
q_l, is equal to A,-l. A direct proof of this fact is 
difficult; instead we use a result that is employed 
in the proof of the Cramer-Rao bound [4]: the 
expectation of the derivative of a log-likelihood 
with respect to any of its parameters is equal to 
zero, In particular, taking the derivative of the 
logarithm of the probability density (3) with 
respect to the real and imaginary parts of the 

E(h*X} = A .  (13) 

The covariance matrix update (11) is 
intuitively reasonable given the fact that 

= EJ K+AAH} = K+AAH. (14) 

The covariance matrix update is guaranteed to be 
nonnegative definite since it can be shown to 
equal the following expression, 

which is a sum of outer products (recall that the 
magnitudes of the weights are less than or equal to 
one). 

The form of the likelihood function (6) 
implies that only the relative phases of the 
components of A can be uniquely estimated (for 
the scalar case only the magnitude of A can be 
estimated uniquely): if the initial guess, A,, 
produces the sequence A, then the initial guess, 
exp { ie}A,, produces the sequence exp{ io} A, 
however the likelihoods for the two estimates at 
each iteration axe equal. 

The EM algorithm requires an initial guess 
for the parameter estimates. The problem of 
choosing good initial guesses requires additional 
research. One initial guess to avoid is A,=O 
which results in At=O for all t. Although A=O is 
a stationary point for the likelihood function it is 
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not a stable point for EM: a perturbation analysis 
discloses that At does not tend to migrate to zero. 

4. CONCLUSIONS 
The multivariate Rician model represents a 

logical generalization of the most common 
probabilistic model for polarimetric S A R  images. 
Without the EM algorithm one might be inhibited 
fi-om using the Rician model in the absence of any 
reliable algorithm for estimating the model 
parameters. The EM algorithm provides an 
explicit, computationally attractive iterative 
parameter estimation technique that is "safe" in the 
sense that convergence to at least a local maximum 
in likelihood is guaranteed. 

Rician distributions are encountered in 
other problem areas such as communication 
through fading channels, and the EM algorithm 
will solve the associated parameter estimation 
problems. 
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