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Self-Recovering  Equalization and  Carrier  Tracking in 
Two-Dimensional  Data  Communication  Systems 

DOMINIQUE  N.  GODARD, MEMBER,  IEEE 

Absrracrxonventional equalization and carrier  recovery 
algorithms  for  minimizing  mean-square  error in digital  communi- 
cation  systems  generally  require an initial  training  period  during 
which  a  known  data  sequence is transmitted  and  properly  syn- 
chronized  at  the  receiver. 

This  paper  solves  the  general  problem  of  adaptive  channel 
equalization  without  resorting  to  a  known  training  sequence  or  to 
conditions  of  limited  distortion.  The  criterion  for  equalizer  adaptation 
is the  minimization  of  a new class  of  nonconvex  cost  functions which 
are  shown to characterize  intersymbol  interference  independently  of 
carrier  phase  and  of  the  data  symbol  constellation used  in the 
transmission  system.  Equalizer  convergence  does not require  carrier 
recovery, so that  carrier  phase  tracking  can be carried out at  the 
equalizer  output  in  a  decision-directed  mode.  The  convergence 
properties  of  the  self-recovering  algorithms  are  analyzed  mathe- 
matically  and  confirmed by computer  simulation. 

A 
I. INTRODUCTION 

PPLICATION of digital processing techniques  in the  de- 
sign of data  communications  equipment,  and particularly 

the  advent in recent  years  of  microprocessor-based modems, 
resulted  in  improved  reliability and  performance of communi- 
cations systems. In  addition  to  the  execution of usual  trans- 
mitter  and receiver tasks, the high flexibility of microproces- 
sor-based  modems  enables them  to provide a  variety  of func- 
tions  such as self-diagnostics, the gathering of information  on 
line quality, or automatic switching to  and  from full and fall- 
back  speeds, and  thus  to  contribute  to  network management. 
The computing power available also  makes  practical the im- 
plementation of recent advances in signal theory. These signi- 
ficant  features  of  microprocessor  modems are of  great interest 
with  the growing use of multipoint  networks  for  computer 
communications applications, where trends to  data  throughput 
enhancement give rise to new  problems,  particularly  in  the 
field of automatic equalization. 

Typically,  adaptive  equalizers need  an initial  training 
period in which a  particular data  sequence,  known  and avail- 
able in  proper  synchronism at  the receiver, is transmitted.  In a 
multipoint  network,  the basic architecture of  which is shown 
in Fig. 1,  the problem  of  fast startup  equalization is of  para- 
mount  importance.  The  control  station usually operates in 
carrier-on mode,  and  tributary terminals  are  allowed to  trans- 
mit only when  polled  by the  control  modem. Messages from 
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Fig. 1. Typical  multipoint network. 

tributary  to  control  station  often being short,  the effective 
data  throughput is, to  a large degree, dependent  on  the  startup 
time of the  control  modem which, at  each  return message, 
must  adapt  to  the particular channel  and  transmitter  from 
which data are received. There is therefore considerable inter- 
est  in  equalizer adjustment algorithms that converge much 
faster than  the  conventional estimated-gradient  algorithm 

A  second problem peculiar to multipoint  networks is that 
of retraining  a tributary receiver which, because of  drastic 
changes in channel characteristics or simply because it was not 
powered-on  during  initial network  synchronization, is not able 
to  recognize data  and polling messages. Since  lines are shared, 
the  control  modem has to  interrupt  data transmission and 
initiate a  new  synchronizing procedure generally causing all 
tributaries to retrain [4]. It is clear that,  particularly  for large 
or heavily loaded  multipoint systems, ilata throughput is in- 
creased and  network  monitoring is made easier by giving 
tributary receivers the  capability  to  acheve  complete  adapta- 
tion  without  the  cooperation of the  control  station,  and 
therefore  without disrupting normal  data transmission to  other 
terminals. The  purpose  of  this paper is the design of processing 
algorithms  which will allow for receiver synchronization  with- 
out requiring the transmission  of  a known training  sequence. 

While the subject of fast startup  equalization is a well- 
covered topic (see for instance the references given in [2] and 
.[6]),  the  communications  literature is very poor  with respect 
to  the problem of self-recovering equalization  and carrier 
tracking  which is dealt with in this paper. As a matter of fact, 
we are only aware  of one paper [5] where this  problem is 
considered  in the  context of amplitude-modulated  data  trans- 
mission systems. In [SI,  the multilevel signal is treated by the 
equalizer as a binary signal, that is its  polarity,  the remaining 
signal being considered as random noise.  This approach  cannot 
be readily extended  to  combined  amplitude  and phase modula- 
tion systems,  in  particular since the  problem of  carrier  phase 
recovery is superimposed to  that  of  equalization. 

[11-[31* 
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In this paper, we shall place ourselves in the  context of two- 
dimensional modulation schemes generally used in high-speed 
voice-band modems,  and which we describe in Section 11. A 
new  variety  of cost  functions  for equalizer adjustment, inde- 
pendent of  carrier phase and  of the  symbol constellation en- 
coding the  data is presented and discussed in Section 111. 
Equalization  algorithms,  requiring the same computing power 
as  the estimated-gradient  algorithm  minimizing the equalized 
mean-squared error, are given in Section IV, and their conver- 
gence properties are addressed  in Section V. The cost  func- 
tions to be minimized are shown to be nonconvex,  but  means 
for circumventing this difficulty are suggested. Finally,  com- 
puter simulations, conducted in the presence of noise and 
severe distortions,  confirm  the effectiveness  of the  approach. 

11. TWO-DIMENSIONAL MODULATION SCHEME 

We consider  a synchronous double-sideband quadrature 
amplitude  modulated  data transmission  system  of the general 
form shown  in Fig. 2. The binary message to  be transmitted is 
usually  scrambled and  converted  by some coding law into  data 
symbols {a,} taken  from a  two-dimensional constellation,  and 
the  two  components are transmitted  by  amplitude-modulating 
two  quadrature carrier waves. Such a modulation scheme can 
be  treated in  a  concise manner  by combining  in-phase and 
quadrature  components  into complex-valued signals. Denoting 
by go(t) the baseband real signal element,  the  symbol interval 
T ,  and  the carrier frequency fo, the  transmitted signal is of the 
form 

u(t) = Re ango(t - nT) exp @nfot. (1) 
n 

Assuming a dispersive transmission medium  with additive noise 
w(t), the receiver input signal can  be expressed as 

x(t)  = Re x ang(t - nT) expj(2nfot + cp(t)) + w(t), (2) 
n 

where g( t )  is a generally complex baseband signal element [7] 
and cp(t) is a  time-varying phase shift  due to  frequency  offset 
and phase jitter. 

At the receiver, the  concept of  carrier  tracking after equaliza- 
tion is employed. This is motivated  by  the  fact  that a proper 
design of the carrier tracking  loop allows removal of relatively 
high-frequency phase jitter [8] . The real-valued signal x( t )  first 
enters a phase splitter whose complex transfer function  r(t) 
is usually matched to  the  transmitted signal element, i.e., 

r(t) = gd-t) exp i2nfo t ,  (3) 

and,  for  the sake of  simplicity, we shall assume that  demodula- 
tion by  a  local  carrier with  frequency fo is carried out  before 
equalization, so that  the equalizer  has  essentially to process  a 
complex baseband signal of  the general form 

~ ( t )  = anh(t - nT) e x p j d t )  + Mt), (4) 
f l  

where h(t) is the overall baseband  equivalent  impulse  response 

II 
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Fig. 2. Twmdimensional transmission system. 

an u(t) is complex fdtered noise. Although we consider  a 
tapped delay-line equalizer having a tap spacing equal to T ,  the 
analyses which will be developed also apply to  the case of 
fractionally  spaced  equalizers [9] . 

Not shown on  the receiver block-diagram  of Fig. 2, but 
necessary in actual  modems,  are  the  automatic gain control 
(AGC), timing recovery circuit,  and descrambler.  Timing con- 
trol  and AGC do  not require  knowledge  of the  transmitted 
data [ lo] and descramblers  usually  are  self-synchronizing. 
Therefore, as far as receiver self-adaptation is concerned, it is 
sufficient to  concentrate  only  on  equalization  and carrier 
tracking  problems. 

Using complex vector notation,  the equalizer output signal 
z ,  at time t = nT can  be  written as 

where y n  is the vector  of tap-output signals and c,  the  tap- 
gain vector at  time nT, both being  N-dimensional. Throughout 
the  paper, a prime (I) denotes  the transpose  of  a  vector. The 
equalizer output sample is rotated  by  an  estimated carrier 
phase Cp̂, and  presented to  the decision circuit. 

Conventionally,  the  criterion  for adjusting c,  and & is  the 
minimization  of the mean-squared error 

where E indicates expectation over all possible noise and  data 
sequences.  Derivation  of (6 )  with respect to c and (p leads to 
the classical stochastic gradient  algorithms 

hc and A,,, being  positive  real,  possibly  time-varying  step-size 
parameters, and  the superscript * denoting  complex  conjugate. 

At this  point, several remarks can  be  made. 
1) Equation (8) describes the  operation of  a first-order 

phase-locked loop.  In  the presence  of frequency  offset, a  sec- 
ond-order  loop is necessary to lock  with a  zero-mean steady- 
state phase error. 

2) As  is obvious from (5) and (6), if a combination (c, (p) 
minimizes the mean-squared error,  then  any  combination 
(c exp j iL,  5, + $) is also optimum. Later we shall take advan- 
tage of this  “tap  rotation”  property of  passband  equalizers 

3) It is important to note  that (7) and (8) show a coupling 
between equalizer updating  and carrier tracking loops. If a 
decision-directed approach (a, replaced  in (7) and (8) by 
receiver’s decisions 5,) is employed  for receiver training,  suc- 
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cessful adaptation requires that c and (p be simultaneously 
close enough to  their optimum values. 

At data  rates of 9600 or 12 000 bits/s, even without as- 
suming severe channel  distortions,  the  probability of symbol 
error  in  unequalized  transmission  systems is very close to 1. It 
is generally observed that decision-directed  recovery fails to 
converge when the  error  probability is in the  order of 0.1, 
except in the case of  pure phase modulation. 

This exception  has  not been well understood so far,  and we 
throw some light on this subject  in the  next  section. 

111. COST FUNCTIONS FOR EQUALIZER ADAPTATION 
The primary goal of our self-recovering equalization  and 

carrier  tracking technique will be to reduce the  effects of chan- 
nel distortions so that  the receiver’s decisions become safe 
enough to  use the conventional  decision-directed  gradient 
algorithms. Intersymbol  interference (ISI) being on  actual 
channels of much greater importance  than noise, it  will be as- 
sumed throughout  the theoretical analyses that  the noise term 
in (4) can be neglected. 

In  the suppressed-carrier transmission  systems we are 
dealing with, carrier phase recovery from  the received data 
signal requires that  the system be equalized. Furthermore, 
even in the absence of phase jitter  and  frequency  offset,  the 
receiver’s initial decisions are not safe enough  estimates  of  the 
transmitted symbols to allow equalizer adaptation.  The general 
problem  of self-recovering equalization can  therefore  be  stated 
as follows: find a cost  function  that characterizes the  amount 
of intersymbol  interference  at  the equalizer output  independ- 
ently of the  data symbol constellation  and of carrier phase. 

Our  criterion will be the minimization  of functions 
called dispersion of order p (p integer > O), defined by 

.D(P)  = E( I Z ~ I P  - ~ p ) ~ ,  (9) 

with the R ,  being positive real constants which we shall dis- 
cuss later. 

The  rationale for such  a  choice will become  clear  by com- 
paring the dispersion functions  with  cost  functions 

G(P) =E( 12, IP- I an  IP)2, (1 0) 

for which only independence from carrier phase is achieved. 
Let { s k }  be the samples at  the  rate 1/T Hz of the overall 

transmission  system  impulse  response,  including the equalizer. 
The equalizer output signal is then of the general form 

z n  = an-kSk expi$,, (1 1) 
k 

where J/, is the phase shift due to  frequency  offset  and phase 
jitter.  The  eye  patterns observed for  pure phase modulation 
and  combined  amplitude  and phase modulation examples,  in 
the case where only  one IS1 term is nonzero, are pictured in 
Fig. 3. The  transmitted symbols  are marked by circles and  re- 
ceived points by dots.  It is clear that  there exists no IS1 term 
able to produce only phase errors which  are not “seen” by 
(lo),  and  therefore  that minimizing G(P), i.e., equalizing only 
the  amplitude of z,, wilI lead to  a small mean-squared error. 

. . 

0 

1869 

It should be  noted here that,  for  pure phase modulation,  chan- 
nel .‘distortions can simply be equalized by constraining the 
equalizer output signal to have constant  magnitude. This is 
achieved by the decision-directed  gradient  algorithm even in 
the presence  of decision errors, which  explains why  its  con- 
vergence is generally observed. 

The  minimization of G ( p )  leads to  the  minimization of IS1 
in a sense which we now specify. For  mathematical  con- 
venience, we shall consider p = 2. The data  symbol  con- 
stellation is assumed to have symmetries so that 

Data  symbols being stationary  and  uncorrelated 

Ean*am = E l a n  l2 6 n m ,  (1 3) 

one has from (1 l), using (12) and (13) 

where 

x’ 
k 

indicates summation with deletion  of  the k = 0 term. 

written as 
It follows from (14) and (15) that,  for p = 2, (10) may be 
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showing that G(’) has a minimum when I so 1’ is close to  
unity and IS1 terms { s k } ,  k f 0, have small magnitude. 

The same type of computation  can be carried out  for  the 
dispersion of order 2,  the evaluation of which  does not require 
the knowledge of the  transmitted  data sequence. One obtains 

- la, I’ t: ISk1’ +R2’. (1 7 )  
k 

In  the  next  section,  it is demonstrated  that  R,  must be chosen 
equal to  El a, 14/El a, 1’. It is then easy to show that (17) 
may be written  under  the particular form 

k 

k 

Comparing (16) and (18), it is seen that,  apart  from  an  addi- 
tive constant, d 2 )  and .o”) have very similar expressions, pro- 
vided that  the  data  symbol  constellation is wch  that  the 
quantity 

4 ( ~ I a ,  I 2 y  Is0 l 2  -2EIa,  14 

is positive when I so 1’ is close to  unity. 
It  may  then be concluded  that  the dispersion has  at least  a 

local minimum to  which corresponds a small mean-squared 
error, defined  in the absence  of noise by 

The  existence of other minima will be  studied in  detail in 
Section V. Now we present equalizer adjustment algorithms 
and show that,  for  an  infinite  length equalizer, perfect equaliz- 
ation is one  steady-state  solution of the  adaptation process. 

IV.  SELF-REXOVERING  EQUALIZATION ALGORITHMS 
Equalizer  tap-gains  are adjusted according to the classical 

steepest  descent algorithm 

In  order to take  the derivative of (9) with respect to  c ,  one 

must assume that  the equalizer gains are not identically zero. 
It can easily be shown  that 

a 
- lYn’C I =Yn*Yn’C IYn’C I -  1 , ac (20) 

from which we obtain 

AS is usually done  when minimizing the mean-squared error, 
one  can  drop  the  expectation  term  in (21) and  transform (19) 
into  the  stochastic  approximation algorithm 

C,+1 =c, -A~Y ,*z ,  I Z, Iz, I’ -Rp), (22) 

where X, is a positive and small enough step-size parameter. 
Now we can define the values of  the  constants R,. It 

should  be  noted  that,  from (21), changing R, into &,(a >O), 
will result  in  changing the  steady-state  solutions c‘ of (22), as- 
suming that  they  exist,  into o l ‘ /Pc ‘ .  The value ofR,  then  only 
controls equalizer  amplification. Naturally, we require  that 
tap-gain increments (21) be zero  when  perfect  equalization is 
achieved.  This condition will define the  constants R,. 

Limiting ourselves to  the case where the phase shift q(t)  in 
(4) is of  the  form 

where cpo is a constant  and Af the  frequency  offset,  the sys- 
tem is perfectly equalized when  the equalizer output signal is 
given by 

z ,  = a, exp j ( $  + 2nAfnn, (24) 

$ being any  constant phase shift, owing to the  tap-rotation 
property of  passband  equalizers. 

Using (4) for expressing the  components  ofy,,  substituting 
(24) into (21) and  noting  that  data  symbols are uncorrelated, 
the gradient  of the dispersion  of order p with respect to  c is 
zero  for R, given by 

From  the  definition of the dispersion and  from (22), 
equalizer adaptation does not require  carrier  recovery. If, 
therefore, convergence to  ideal  tap-gain  settings is obtained, 
i.e., when  (24)  becomes  a  good approximation to the equalizer 
output signal, carrier tracking  can be carried out  in  the deci- 
sion-directed mode, provided that  the  loop gain X, in (8) is 
large enough to handle frequency  offsets  at  most  equal to k7 
Hz according to CCITT recommendations V27 and V29. T h e  
phase ambiguity in the receiver’s decisions inherent in sup- 
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pressed-carrier systems with  symmetric signal constellations 
will be removed  by  differential phase encoding  at  the trans- 
mitter, so that  an  absolute phase reference is not necessary. 
The block diagram of Fig. 4 shows the principle of  operation 
of the self-recovering technique. 

We conclude  this  section  by discussing the influence  of p .  
In (22), the signal 

en = Z n  IZn I Zn I' -Rp)  (26) 

replaces the usual error signal in the least  mean-square algo- 
rithm;  Note first that,  except  for  pure phase modulation, E ,  

is not small even when equalization is perfect,  and  its dynamic 
range is an increasing function of p .  Therefore,  the selection of 
the step-size X, for  ensuring convergence and reasonably small 
tap-gain fluctuations becomes increasingly difficult with p .  
Furthermore,  the  computation of the equalizer-coefficient 
increments in (22) in a digital implementation  with finite 
length arithmetic would  suffer from precision or overflow 
problems for large p [ 121. This limits the practical  applica- 
tions of $') to p = 1 or 2. For p = 1, (22)  becomes 

with 

But  choosing p = 2 leads to  the algorithm 

C,+ 1 = C, - *z,( I Z, I2 - R 2 )  

h 

YWJ 2 znexp-i$n  necision Aa, 
+ Equalizer If Circuit 

1 I 

Fig. 4. Structure of the self-recovering technique. 

We were not successful in deriving the  solutions to  (29) 
directly  in terms of c. We shall therefore consider the  much 
simpler problem which,  from (1 l), consists of expressing the 
dispersion under  the  form 

and solving 

To begin with,  let us  consider p = 2 .  One  has 
(27) 

(30) 

Using (12) and (13) and  after some manipulations, one obtains 

with =o, Vl. (31) 

EI~,  l4 
R2 =------ This  set  of equations  has  an  infinite  number of solutions 

Elan l2 which we shall denote by S,, M = 0, 1, . The general 
solution s, can be defined as follows:  samples { s k }  are 

which is remarkably simple to  implement in  a  microprocessor- equal to zero, except of them. The samples 
based receiver. The speeds  of convergence of  adaptation have equal squared magnitude uM2 defined by 
algorithms (27)  and (28) will be compared  in  the  computer 
simulation  section. =EIa,  I4{E)a, l4 + 2(M- l ) (E(a ,  1 2 ) 2 } - 1 .  (32) 

V. CONVERGENCE PROPERTIES 

In this section, we analyze the  convexity of the dispersion. 
We show that  the dispersion is not a  convex function,  but  that 
its  absolute minimum is reached for  zero IS1 at  the equalizer 
output. The  problem raised by the existence  of  local  minima is 
also  shown to  be soluble  by simple initialization  of the  equal- 
izer reference  tap-gain. Our analysis will be limited t o p  = 1 

Note  that S1 is the ideal case of  zero IS1 at  the equalizer out- 
put  and  that  solution So, for which the equalizer  coefficients 
are identically zero,  must be discarded. For  each  solution S,, 
it is now possible to  compute  the values of  the energy E, and 
of  the dispersion DM(') at  the equalizer output. Using (32) 
and  the statistical properties  of  the  data symbols,  one has 

and 2 for the reasons mentioned above. The equalizer will also E, =ME l a ,  1 4 ~  l a ,  1 2 { ~  l a ,  14 + 2 ( ~ -  1)(Ela, l 2 ~ 2 ) - 1 ,  

be assumed of infinite  length. 
Our  problem is to find  the  solutions  to (33) 
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From (33) and (34), it is easy to show that, if the  data symbol 
constellation satisfies the  condition 

Elan l4 <2(EIan 12)', (35) 

then 

v M ( ~ )  < v M + ~  (2 ) , (36) 

EM   EM+^, M Z O .  

The absolute minimum of the dispersion is therefore reached 
in the case of zero IS1 and  solution S1 is that  for  which  the 
energy is the largest. 

This gives a  first indication as to how  the equalizer gains 
must be initialized: they  must be such that  the energy at  the 
equalizer output  be sufficiently  large, at least  greater than E 2 .  
A second, generally more restrictive condition is given by in- 
spection of the expression  of @2) when written  under  the 
particular form (18). The existence  of  a minimum  corre- 
sponding to  zero IS1 appears  obvious  only if the  quantity 
multiplying sk I2 in (18) is positive,  which  imposes 

(37) 

Denoting by ho the  channel impluse response sample having 
the largest magnitude,  condition (37) is met by  initializing all 
equalizer gains to  zero  except  the reference tap-gain which 
must  be  such  that 

Computer simulations will show that (38) is in  fact a  sufficient 
but nonnecessary condition  for convergence. 

Throughout  this analysis, we were led to  impose two  con- 
ditions  on  the  data  symbol  constellation.  Condition (12) 
implies  some kind of symmetry in the  constellation.  Such 

' symmetries appear when, as we assumed, data are  phase- 
differentially encoded.  It  should  be  noted, however, that  our 
self-recovering technique does not  apply  to  the case of  biphase 
modulation where Ea,' is not zero. 

Condition (35) expresses the  fact  that  the signal constella- 
tion  must  be sufficiently compact  and is met  for all constella- 
tions of  practical interest, since they are  selected so that  their 
peak to  average energy ratio  is reasonably small (of order of 2) 
for good noise immunity [ 131'. 

The analysis  of the dispersion  of order 1 is more difficult to  
carry  out. However, .O(l) may  be shown to have the same kind 
of general properties as I%')'. For p = 1 ,  one  obtains  instead of 
(30) 

(39) 

which is zero  for  any 1 if 

As is the case for (31), this  set of equations  has  an  infinite 
number of solutions SM','M = 0, 1 -, that can be defined.as 
follows: all samples {sk) are equal to  zero,  except M of  them. 
Owing to  the  stationarity of the  data  sequence,  the M nonzero 
samples all have equal  magnitude OM' given by 

, M 2 1 .  (41) 

Clearly, solution S1' corresponds to  zero ISI. 
There 1s no simple expression  for the values of the disper- 

sion and of the energy at  the equalizer output  corresponding 
to each solution SM'.  However, (41) can  be evaluated for  any 
given symbol  constellation  on a computer.  Such  computations 
showed that  solution S1 ' is that  for which the energy is the 
largest and  the dispersion is minimized, which imposes  on  the 
equalizer  reference gain initialization the same type  of  con- 
straints as in  the case for p = 2. 

This is confirmed  by  computer  simulation  in  the  next 
section. 

VI. COMPUTER SIMULATIONS 
In  the  theoretical analysis, an  infinite  length equalizer and 

the absence  of noise had to be assumed: We now  check  the 
validity  of the  theory  by presenting  equalizer  convergence  re- 
sults  obtained  with  the  stochastic  adaptation algorithms 

and 

corresponding t o p  = 1 and 2,  respectively. 
The  channels considered in  the  simulations are defined by 

the  amplitude  and group-delay  characteristics shown  in Fig. 5. 
We assumed  a  transmission  speed  of 2400 bauds  with  the  car- 
rier located  at 1700 Hz, and  an equalizer with 30 complex  tap 
gains. The  four  data  symbol  constellations given in Fig. 6 were 
tested,  corresponding to bit  rates of 7200,  9600, and 12 000 
bits/s.  For  both  channels,  the  binary  eye is closed and we 
checked the failure  of  decision-directed' attempts  to achieve 
equalizer  training, except in the case of  the 8-phase con- 
stellation. 
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Fig. 6.  Data symbol constellations. 

Two simulation programs have been written.  The first one, 
for a given channel, calculates the sample values of the wave- 
form h(t), normalizes the energy E, I h(rz7') I2 to  unity,  and 
determines the  optimum (in the sense of minimum  mean- 
squared error) equalizer  coefficients Copt and the  minimum 
attainable mean-squared error Emin*. It also rotates  the copt 
vector components so that  the imaginary part of the  optimum 
reference  coefficient is equal  to  zero.  The second  program 
generates  a random  data signal with a frequency  offset of 8 
Hz,  adds  white noise to  it  and simulates the equalizer adapta- 
tion algorithms and a  second-order carrier-phase tracking loop 
operating in  decision-directed mode. Since,  in fact, we are 
interested in reducing the mean-squared error,  the  actual MSE 
is periodically  calculated  according to 

En2 = (Copt - E,)*'A(cop, -E,) + Em& 

where A is the  channel  correlation  matrix  and E, is derived 
from  actual gains c, by rotating  them so that  the reference 
tap-coefficient is real. 

Denoting  by ho the  optimum step-size proposed by 
Ungerboeck [I41 when the  data sequence is known  at  the 
receiver 

hl and h2 in (27) and (28) were initially  chosen equal to  
X0/5 and X0/200, respectively,  and divided by 2 each 10 000 
iterations  in  the course of the convergence process. These 
choices were found  appropriate a posteriori from simulation 
results. When choosing hl and h2 greater than  indicated,  the 
squalizer comes close to  instability. 

Equalizer gains were initially set  to  zero,  except C o ,  the 
initial value of which was a variable parameter in the simula- 
tion program. 

For p = 1, reliable convergence was obtained when taking 
co > 0.8 for  channel 1 and co > 1.2 for channel 2 whose dis- 
tortions are extremely severe. For p = 2, one  had to take 
co > 1.3 for  channel 1 and co > 2 for channel 2. 
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In  the case of the V/29 constellation,  for  which  the  ratio 
Ela,  14/(Ela, 12)2 is the largest, condition (38) imposes to 
choose co > 1.4 for  channel 1 and co > 2.4 for  channel 2. The 
results obtained by simulations are therefore  in good agree- 
ment  with  the analysis of Section V. 

The speed of convergence of  algorithms (27) and (28) is 
illustrated by  the  plots of Fig. 7 where each curve was 
obtained by averaging five computer  runs  with  different 
initializations of, noise and  data sources. The convergence for 
p = 2 appears to  be  faster  than for p = 1. 

It  should also be  noted  that  the equalizer coefficients 
minimizing the dispersion functions closely approximate  those 
which minimize the mean-squared error. 

The  eye is open when the MSE approaches -15 dB. At  that 
point, convergence could  be speeded up  by switching the 
equalizer into decision-directed mode. One may  therefore  con- 
sider that  the  time to adapt  the equalizer is of  order of 10 s. 

It rnust be noted  that  no difficulties were encountered 
when updating  the  carrier. phase estimate & using the re- 
ceiver’s decisions from  the beginning of  equalizer adjustment. 

Authorized licensed use limited to: OST - Ostschweizer Fachhochschule. Downloaded on October 14,2021 at 13:50:40 UTC from IEEE Xplore.  Restrictions apply. 



GODARD: TWO-DIMENSIONAL DATA COMMUNICATION SYSTEMS 

Finally, we also tested the convergence properties of the 
dispersion of  order 3. Convergence in that case is much slower 
and  requires that  the step-size parameter be smaller than 
10-4X0. Such a small value is not practical to  implement  with 
fixed-point arithmetic. 

VII. SUMMARY AND CONCLUSIONS 
We have introduced in this paper  a  new class of cost  func- 

tions  and algorithms for  automatic equalization  in data re- 
ceivers employing  two-dimensional modulation. Equalizer 
adaptation does not require the knowledge of the  transmitted 
data sequence nor carrier phase recovery and is also, apart 
from a constant multiplier in final tapgain settings, inde- 
pendent of the  data  symbol constellation used in the  trans- 
mission system. 

The cost  functions  to be minimized  are not  convex,  but 
convergence to  optimal gains can be ensured  by employing 
small step-size parameters in  adaptation  loops  and initializing 
the equalizer reference gain to  any large enough value, typi- 
cally in the order  of 2 when the equalizer input energy is 
normalized to  that of the  data  symbol  constellation. Practi- 
cally, data receivers are usually equipped  with an automatic 
gain control  circuit, so that equalizer  initialization  should not 
be a  critical  problem. 

Simulations have shown that  the self-recovering algorithms 
are extemely  robust with  respect to  channel  distortions. 

As expected, since data symbols  are not  known  at  the re- 
ceiver, equalizer convergence is slow, of the order of 10 s for 
transmission at 2400 bauds over severely distorting lines.  How- 
ever, for  the purpose  of  retraining a tr ibutary  receiver in 
multipoint  networks  without disrupting normal  data  trans- 
mission, speed  of convergence is not of paramount  impor- 
tance. For this  reason, no  attempts were made  to define 
theoretically the step-size parameters which should be used, 
and  to evaluate the influence of the number of taps on the 
speed of convergence. 

The  algorithms  which we have proposed  do  not require 
more computing power than  the conventional  gradient algo- 
rithm  for minimization of  the mean-squared error, which 
makes their  implementation  easy, and therefore  attractive, in 
microprocessor-based data receivers. 
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