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Abstract

A number of basic properties about circularly-symmetric Gaussian random vectors
are stated and proved here. These properties are each probably well known to most
researchers who work with Gaussian noise, but I have not found them stated together
with simple proofs in the literature. They are usually viewed as too advanced or too
detailed for elementary texts but are used (correctly or incorrectly) without discussion
in more advanced work. These results should have appeared in Section 7.8.1 of my
book, R. G. Gallager, “Principles of Digital Communication,” Cambridge Press, 2008
(PDC08), but I came to understand them only while preparing a solution manual when
the book was in the final production stage.

1 Pseudo-covariance and an example

Let Z = (Z1, Z2, . . . , Zn)T be a complex jointly-Gaussian random vector. That is, �(Zk)
and �(Zk) for 1 ≤ k ≤ n comprise a set of 2n jointly-Gaussian (real) random variables
(rv’s). For a large portion of the situations in which it is useful to view 2n jointly-Gaussian
rv’s as a vector of n complex jointly-Gaussian rv’s, these vectors have an additional
property called circular symmetry. By definition, Z is circularly symmetric if eiφZ has
the same probability distribution as Z for all real φ. For n = 1, i.e., for the case where Z
is a complex Gaussian random variable Z, circular symmetry holds if and only if �(Z) and
�(Z) are statistically independent and identically distributed (iid) with zero mean, i.e.,
if and only if �(Z) and �(Z) are jointly Gaussian with equi-probability-density contours
around 0.

Since E[eiφZ ] = eiφE[Z ], any circularly-symmetric complex random vector must have
E[Z ] = 0, i.e., must have zero mean. In a moment, we will see that a circularly-symmetric
jointly-Gaussian complex random vector is completely determined by its covariance ma-
trix, KZ = E[ZZ †], where Z † = Z T∗ is the complex conjugate of the transpose. A
circularly-symmetric jointly-Gaussian complex random vector Z is denoted and referred
to as Z ∼ CN (0, KZ ), where the C denotes that Z is both circularly symmetric and
complex.

Most communication engineers believe that vectors of Gaussian random variables (real
or complex) are determined by their covariance matrix. For the real case, this is only
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true when the variables are jointly Gaussian (see Section 7.8, PDC08). For the complex
case, as emphasized and explained here, it is only true when the variables are both jointly
Gaussian and circularly symmetric.

Example 1: Consider a vector Z = (Z1, Z2)
T where Z1 ∼ CN (0, 1) and Z2 = Z∗

1 . Then
Z1 has iid real and imaginary parts, each N (0, 1/2). Z2 also has iid real and imaginary
parts, both Gaussian, so it is also circularly symmetric. The real and imaginary parts
of Z2 are jointly Gaussian with those of Z1, so Z is jointly Gaussian with circularly-
symmetric components. On the other hand, for Z1 real (or approximately real), Z2 = Z1

(or Z2 ≈ Z1). When Z1 is pure imaginary (or close to pure imaginary), Z2 is the negative
of Z1 (or Z2 ≈ −Z1). Thus Z doesn’t appear to have the required circular symmetry (we
justify this more precisely later).

The covariance matrix for this example is easily calculated to be KZ =
[

1 0
0 1

]
. This is also

the covariance function of two iid unit variance complex rv’s. The point of this example,
then, is first that individual circular symmetry among the components of a random vector
is not enough to provide overall circular symmetry, and second that complex jointly-
Gaussian random vectors are not fully specified by their covariance matrices.

We have now seen that there is something wrong with the conventional wisdom and also
that circular symmetry for random vectors is more subtle than circular symmetry for
individual random variables. To make matters worse, we now show that the covariance
matrix is always defective in determining circular symmetry. In particular, for any zero-
mean complex random vector Z , KeiφZ is the same as KZ . To see this,

KeiφZ = E[(eiφZ )(e−iφZ ∗)T] = KZ . (1)

It is now time to dig ourselves out from this muddle of conventional wisdom. Although
the covariance matrix does fully specify the distribution of a zero-mean real jointly-
Gaussian random vector, there is another matrix, called the pseudo-covariance matrix,
MZ = E[ZZ T], that is needed, along with KZ , to specify the distribution of an arbitrary
complex jointly-Gaussian random vector. For the example above, MZ =

[
0 1
1 0

]
, whereas

for the case of two iid complex rv’s, MZ = 0.

The probability density of a complex random vector Z = (Z1, . . . , Zn)T is defined to be
the probability density of the 2n real rv’s V = (�(Z1), . . . ,�(Zn),�(Z1), . . . ,�(Zn))T.
If Z is zero-mean and complex jointly Gaussian, then V is determined by its 2n by 2n
covariance matrix, say KV . It turns out that KZ and MZ together specify KV . In fact,
by calculating the k, j element of KZ and MZ , we see that

E[�(Zk)�(Zj)] =
1

2
[�(KZ (k, j)) + �(MZ (k, j))] , (2)

E[�(Zk)�(Zj)] =
1

2
[�(KZ (k, j)) −�(MZ (k, j))] , (3)

E[�(Zk)�(Zj)] =
1

2
[−�(KZ (k, j)) + �(MZ (k, j))] , (4)

E[�(Zk)�(Zj)] =
1

2
[�(KZ (k, j)) + �(MZ (k, j))] . (5)
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Thus the covariance of each pair of the 2n rv’s, and thus the joint probability distribution
of Z , is determined by KZ and MZ . In order for Z and eiφZ to have the same distribution,
it is necessary and sufficient to satisfy KeiφZ = KZ and MeiφZ = MZ . The first condition
is automatically satisfied by (1), so MZ = MeiφZ is necessary and sufficient for circular
symmetry. On the other hand

MeiφZ = E[(eiφZ )(eiφZ )T] = e2iφMZ

Thus1 MeiφZ = MZ if and only if MZ = 0.

This is summarized in the following theorem:

Theorem 1. Assume that Z is a complex jointly-Gaussian random vector. Then Z is
circularly symmetric if and only if MZ = 0. In this case, the distribution of Z is determined
by KZ.

This theorem explains the above example. In the example, MZ =
[

0 1
1 0

]
and thus MeiφZ =[

0 e2iφ

e2iφ 0

]
. Thus, Z and eiφZ do not have the same distribution even though, as

complex random vectors, they have the same covariance matrix.

The definition of circular symmetry seems to capture the intuitive notion of circular
symmetry somewhat better than the condition MZ = 0, but the latter is often easier to
work with.

Example 2: We now give an example illustrating the importance of the jointly-Gaussian
requirement (as opposed to an individually Gaussian requirement). Consider a complex
random 2-vector Z for which Z1 ∼ CN (0, 1) and Z2 = UZ1 where U is statistically
independent of Z1 and has possible values ±1 with probability 1/2 each. Then Z1 and
Z2 are not jointly Gaussian, and in fact �(Z1) and �(Z2) have a joint distribution that
is concentrated on the two diagonal axes. It is easy to see that KZ =

[
1 0
0 1

]
and MZ = 0

and thus Z is circularly symmetric. The corresponding real random 4-vector V satisfies
KV = I4, so the rv’s are uncorrelated. However, they are clearly not independent and the
probability density does not exist.

The point of this example is that the joint Gaussian property is important in the results
that have been derived. The stubborn believer in an oversimplified world might try to
think that Examples 1 and 2 rely on the lack of a probability density. This is not true,
and each example would lead to the same conclusion if we modified Z by adding a nice
random vector Y ∼ CN (0, ε). This would yield a true probability density and slightly
complicate but not change the issues discussed.

1Note that the statement MeiφZ = MZ if and only if MZ = 0 is valid whether or not Z is Gaussian.
Similarly (1) is valid whether or not Z is Gaussian.
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2 Linear transformations of circularly-symmetric

Gaussian vectors

Circular symmetry can also be characterized as the result of a linear transformation (in C)
of m iid random variables, each CN (0, 1). Thus let W ∼ CN (0, Im). That is, W1, . . . , Wm

are iid and have iid real and imaginary parts, thus consisting collectively of 2n iid real
rv’s, each N (0, 1

2
). Let A be an arbitrary m by n complex matrix and let Z = AW . Then

KZ = E[AWW †A†] = AA†; MZ = E[AWW TAT] = 0

Thus Z is circularly symmetric and denoted by CN (0, AA†),

As explained in greater detail in Section 7.11.1 of PDC08, the class of covariance matrices
(real or complex) is the same as the class of nonnegative-definite matrices. Each such
matrix K can be represented as

K = QΛQ−1 (6)

where Λ is diagonal with nonnegative terms which are the eigenvalues of K. The columns
of Q are orthonormal eigenvectors2 of those eigenvalues. By choosing R = Q

√
ΛQ−1,

we see that Z = RW has the covariance matrix KZ = RR†. This means that for any
covariance matrix K, there is a matrix R such that the random vector Z = RW has
covariance K and pseudo-covariance 0. This is summed up in the following theorem.

Theorem 2. A necessary and sufficient condition for a random vector to be a circularly-
symmetric jointly-Gaussian random vector is that it has the form Z = AW where W is
iid complex Gaussian and A is an arbitrary complex matrix.

We now have three equivalent characterizations for circularly-symmetric Gaussian random
vectors, first, the definition in terms of phase invariance, second, in terms of zero pseudo-
covariance, and third, in terms of linear transformations of iid Gaussian vectors. One
advantage of the third characterization is that the jointly-Gaussian requirement is auto-
matically met, whereas the other two depend on that as a separate requirement. Another
advantage of the third characterization is that the usual motivation for modeling random
vectors as circularly symmetric is that they are linear transformations of essentially iid
complex Gaussian random vectors.

3 The real and imaginary parts of circularly symmet-

ric random vectors

Since the probability density of a complex random variable or vector is defined in terms of
the real and imaginary parts of that variable or vector, we now pause to discuss these rela-
tionships. The major reason for using complex vector spaces and complex random vectors

2A complex matrix with orthonormal columns is called a unitary matrix.
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is to avoid all the detail of the real and imaginary parts, but our intuition comes from
R2 and R3, and the major source of confusion in treating complex random vectors comes
from assuming that Cn is roughly the same as Rn. This assumption causes additional
confusion when dealing with circular symmetry.

Let Z be a random complex n-vector Z = (Z1, . . . , Zn)T and let the corresponding real
random 2n-vector V consist of the real and imaginary components of Z , taken in the
order V = (�(Z1), . . . ,�(Zn),�(Z1), . . . ,�(Zn))T.

We start by relating the 2n by 2n real covariance matrix KV = E[VV T] to the n by n
matrix KZ = E[ZZ †]. The (real) covariance matrix KV can then be expressed in block
form in terms of the (complex) covariance matrix KZ .

KV =

 E[�(Z )�(Z T) E[�(Z )�(Z T)

E[�(Z )�(Z T) E[�(Z )�(Z T)


Assume in what follows that Z is circularly symmetric. The pseudo-covariance matrix,
MZ is then zero, so expressing (2), in matrix form, we get E[�(Z )�(Z T)] = 1

2
�(KZ ).

Using (3), (4), and (5) in the same way, KV can be expressed as

KV =

 1
2
�(KZ ) −1

2
�(KZ )

1
2
�(KZ ) 1

2
�(KZ )

 (7)

It can then be verified by matrix multiplication3 with (7) that if KZ is non-singular, then
K−1

V is also non-singular and its inverse is given in block form by

K−1
V =

 2�(K−1
Z ) −2�(K−1

Z )

2�(K−1
Z ) 2�(K−1

Z )

 (8)

We next relate the eigenvalue, eigenvector pairs of KZ to those of KV . Let λj be an
eigenvalue of KZ and let q j = (q1j, . . . , qnj)

T be a corresponding eigenvector, chosen so that
the set of eigenvectors is orthonormal. Let r j = (�(q1j), . . .�(qnj),�(q1j), . . . ,�(qnj))

T

be the corresponding eigenvector expressed as a real 2n-vector.

We now show that r j is an eigenvector of KV with the eigenvalue λj/2. Using (7) (which

3In more detail, In = KZK−1
Z implies that �(KZ )�(K−1

Z ) − �(KZ )�(K−1
Z ) = In and �(KZ )�(K−1

Z ) +
�(KZ )�(K−1

Z ) = 0. With this, it is seen that the product of (6) and (7) is I2n
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depends on the circular symmetry of Z ),

KV r j =

 1
2
�(KZ ) −1

2
�(KZ )

1
2
�(KZ ) 1

2
�(KZ )

 �(q j)

�(q j)



=

 1
2
�(KZ )�(q j) − 1

2
�(KZ )�(q j)

1
2
�(KZ )�(q j) + 1

2
�(KZ )�(q j)



=

 1
2
�(KZq j)

1
2
�(KZq j)

 =

 λj

2
�(q j)

λj

2
�(q j)

 =
λj

2
r j (9)

In the penultimate step, we used the facts that λj is real and that q j is an eigenvector of
KZ .

This specifies n of the eigenvalue/eigenvector pairs of KV , but what about the rest? We
next show that the eigenvalues of KV come in pairs. For each eigenvalue λj of KZ , there
are two eigenvalues of KV , each equal to λj/2. The corresponding eigenvectors can be
chosen as r j and m j where m j = (−�(q1j), . . . ,−�(qnj),�(q1j), . . . ,�(qnj)

T. It can
be seen that m j is the representation of iq j as a real 2n-vector. It can also be verified
directly that r j and m j (as vectors in R2n) are orthonormal.4 Next, the calculation in
(9), with r j replaced by m j, shows that m j is an eigenvector of KV with eigenvalue λj/2.
Finally, let q j and qk be orthonormal eigenvectors of KZ . Then the corresponding real
2n-vectors r j and r k are orthonormal, as shown by

r T

jr k = �(qT

j )�(qk) + �(qT

j )�(qk) = �(q †
jqk) = δj,k

Similarly, (r j,mk) are orthonormal and (m j,mk) are orthonormal. Thus the set
(r 1, . . . , rn,m1, . . . ,mn) is an orthonormal set and spans R2n.

4 The probability density of circularly-symmetric

Gaussian vectors

Assuming that KZ is positive definite, all its eignevalues λ1, . . . , λn are positive, so all the
eigenvalues of KV are also positive and KV is positive definite. The probability density
of Z is defined as the joint probability density of its real and imaginary parts, so it is the
probability density associated with V . Since this is jointly Gaussian and non-singular,

fV (v) =
1

(2π)n
√

det(KV )
exp

−v TK−1
V v

2
(10)

4One could equally well replace r j with eiφr j for any real φ and replace mj with eiφmj .
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This can be expressed directly in terms of the complex random n-vector Z . For any
sample value z of Z , the corresponding real 2n-vector is v T = (�(z T),�(z T)). Using this
and the expression in (8) for K−1

V ,

v TK−1
V v = 2z †K−1

Z z (11)

Establishing this equality also uses the fact that z †K−1
Z z is real. We now recall that each

eigenvalue λj of KZ corresponds to two eigenvalues, both λj/2, of KV . Thus

det(KV ) = 22n(det KZ )2 (12)

Substituting these relations into (10), we get an expression for fZ in terms of KZ .

fZ (z ) =
1

πn det(KZ )
exp(−z †K−1

Z z ) (13)

Note that (10) is valid for any jointly-Gaussian 2n-vector, whereas (11) and (12), and thus
(13), depend on circular symmetry. Next, suppose an arbitrary random vector Z has the
density in (13). We have seen that there is a circularly-symmetric Gaussian random vector
with the covariance matrix KZ , and this also has the density in (13). Since the density
fully describes whether Z is circularly-symmetric jointly Gaussian, we conclude that (13)
is a necessary and sufficient condition for a non-singular complex random vector to be
circularly-symmetric jointly Gaussian. The following theorem summarizes this.

Theorem 3. Assume that Z is a complex random n-vector with an arbitrary non-singular
covariance KZ. Then (13) is a necessary and sufficient condition for Z to be CN (0, KZ).

If KZ is singular, then one or more components of Z are deterministic linear combinations
of the other components, so the most convenient way of specifying Z is by first removing
components of Z that are deterministic linear combinations of the remaining components
and using (13) for the remaining components.

As with real jointly-Gaussian random vectors, it is often more insightful to express
the probability density in terms of the eigenvalues and eigenfunctions of KZ . Letting
λ1, . . . , λn be the eigenvalues of KZ (repeated as necessary) and q1, . . . , qn be the corre-
sponding eigenfunctions, we can use (6) to express KZ as

KZ =
n∑

j=1

λjq jq
†
j

Substituting this into (13,

fZ (z ) =
1

πn det(KZ )
exp

(
−

∑
j

z †q jλ
−1
j q †

jz

)

Expressing q †
jz as the projection of z on q j, i.e., as 〈z , q j〉, and recalling that det KZ =∏

j λj, this becomes

fZ (z ) =
n∏

j=1

1

πλj

exp
(
−|〈z , q j〉|2λ−1

j

)
(14)
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This is the density of n independent circularly-symmetric Gaussian random variables,
(〈Z , q1〉, . . . , 〈Z , qn〉) with variances λ1, . . . , λn respectively. In other words, expressing
Z in the orthonormal basis {q1, . . . , qn}, the variables in this basis are independent
circularly-symmetric Gaussian random variables with variances λ1, . . . , λn. This is the
same as the analogous result for jointly-Gaussian real random vectors which says that
there is always an orthonormal basis in which the variables are Gaussian and independent.
This analogy forms the simplest way to (sort of) visualize circularly-symmetric Gaussian
vectors – they have the same kind of elliptical symmetry as the real case, except that
here, each complex random variable is also circularly symmetric. It should be clear that
(14) is also an if-and-only-if condition for circularly-symmetric jointly-Gaussian random
vectors.

5 Linear functionals of circularly-symmetric random

vectors

Let Z ∼ CN (0, KZ ). If some other random vector Y can be expressed as Y = BZ , then
Y is also a circularly-symmetric jointly-Gaussian random vector. To see this, represent
Z as Z = AW where W ∼ CN (0, I). Then Y = BAW , so Y ∼ CN (0, BKZB†). This
helps show why circular symmetry is important – it is invariant to linear transformations.

If B is 1 by n (i.e., if it is a row vector bT) then Y = bTZ is a complex rv. Such rv’s
are called linear functionals of Z . Thus all linear functionals of a circularly-symmetric
jointly Gaussian random vector are circularly-symmetric Gaussian rv’s.

Conversely, we now want to show that if all linear functionals of a complex random
vector Z are circularly-symmetric Gaussian, then Z must also be circularly-symmetric
and jointly-Gaussian. The question of being jointly Gaussian can be separated from
that of being circularly symmetric. Thus assume that for all complex n-vectors bT, the
complex rv bTZ is complex Gaussian. Looking at V and bT as real 2n vectors, V =
(�(Z1), . . . ,�(Zn),�(Z1), . . . ,�(Zn)T and r T = (�(b1), . . . ,�(bn),�(b1) . . . ,�(bn))T, we
see that r TV is a Gaussian random variable for all b. Since r can be arbitrarily chosen
by choosing the real and imaginary components of b, we see that all real linear functionals
of V are Gaussian. It is known for real random vectors (see for example Section 7.3.6
of PDC08) that V is jointly Gaussian if all its linear functionals are Gaussian random
variables. Thus Z is complex jointly Gaussian if all its linear functionals are complex
Gaussian random variables.

We could now show that Z is also circularly symmetric and jointly Gaussian if bTZ is
circularly-symmetric Gaussian for all b, but it is just as easy, and yields a slightly stronger
result, to show that Z ∼ CN (0, KZ ) if Z is jointly Gaussian and, in addition, the limited
set of linear functionals Zj + Zk is circularly symmetric Gaussian for all j, k. If Zj + Zj

is circularly symmetric for all j, then E[Z2
j ] = 0, so that the main diagonal of MZ is

zero. If in addition, Zj + Zk is circularly symmetric, then E[(Zj + Zk)
2] = 0. But since

E[Z2
j ] = E[Z2

k ] = 0, 2E[ZjZk] = 0. Thus the j, k element of MZ = 0. Thus if Zj + Zk is
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circularly symmetric for all j, k, it follows that MZ = 0 and Z is circularly symmetric.5

6 Summary

In summary, we have proved the following theorem.

Theorem 4. A complex random vector Z is CN (0, KZ) if and only if any one of the
following conditions is satisfied.

• Z is jointly Gaussian and has the same distribution as εiφZ for all real φ.

• Z is zero-mean jointly Gaussian and the pseudo-covariance matrix MZ is zero.

• Z can be expressed as Z = AW where W is a vector of statistically independent
components, all CN (0, 1).

• For non-singular KZ, the probability density of Z is given in (13). For singular KZ,
(13) gives the density of Z after removal of the deterministically dependent compo-
nents.

• For non-singular KZ, the probability density of Z is given in (14). For singular KZ,
(14) gives the density of Z after removal of the deterministically dependent compo-
nents.

• All linear functionals of Z are complex Gaussian and Zj +Zk is circularly symmetric
for all j, k.

Note that either all or none of these conditions are satisfied. The significance of the
theorem is that any one of the conditions may be used to either establish the circularly-
symmetric jointly-Gaussian property or to show that it does not hold.

5Example 2 illustrates the strange behavior possible when vecZ is circularly symmetric and individu-
ally Gaussian but not jointly Gaussian.
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