Rayleigh and Rician Fading

Consider two independent normal random variables $X \sim N\left(m_{1}, \sigma^{2}\right)$ and $Y \sim N\left(m_{2}, \sigma^{2}\right)$. Let us define a complex Gaussian random variable Z via : $Z=X+j Y$. The envelope and phase of the random variable Z are defined as:

$$
R=\sqrt{X^{2}+Y^{2}}, \quad \Theta=\tan ^{-1}\left(\frac{Y}{X}\right)
$$

The unique solution of these equations for X and Y in terms of R and Θ are given by the polar coordinate representation:

$$
X=R \cos \Theta, Y=R \sin \Theta
$$

The Jacobian for the area transformation is given by:

$$
d x d y=r d r d \theta \Longleftrightarrow\left|\mathbf{J}\left(\frac{r, \theta}{x, y}\right)\right|=\frac{1}{r} .
$$

Using the Jacobian method for the joint distribution of R and θ we obtain:
$f_{R, \Theta}(r, \theta)=\frac{r}{2 \pi \sigma^{2}} \exp \left(-\frac{r^{2}+s^{2}}{2 \sigma^{2}}\right) \exp \left(-r \frac{m_{1} \cos \theta+m_{2} \sin \theta}{\sigma^{2}}\right) u(r), \theta \in[-\pi, \pi]$.
$I_{o}(x)$ is the modified zero-th order Bessel function of the first kind defined by

$$
I_{o}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-x \cos \theta} d \theta
$$

The parameter s is the non-centrality parameter of the faded envelope and is defined as:

$$
s=\sqrt{m_{1}^{2}+m_{2}^{2}} .
$$

The Rice factor K of the faded envelope is a measure of the power in the faded envelope that has been produced by the means of X and Y and is defined as :

$$
K=\frac{m_{1}^{2}+m_{2}^{2}}{2 \sigma^{2}}=\frac{s^{2}}{2 \sigma^{2}} .
$$

Upon integrating this expression over $\theta \in[-\pi, \pi]$ from $f_{R, \Theta}(r, \theta)$, we obtain the marginal distribution over the envelope:

$$
f_{R}(r)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}+s^{2}}{2 \sigma^{2}}\right) I_{o}\left(\frac{r s}{\sigma^{2}}\right) u(r)
$$

In general the marginal distribution for the phase is dependent on θ and is obtained by integrating out R from the joint distribution:

$$
f_{\Theta}(\theta)=\frac{1}{2 \pi} \exp \left(-\frac{s^{2}}{2 \sigma^{2}}\right)+\frac{\tilde{m}}{2 \pi \sigma} \exp \left(\frac{\tilde{m}^{2}-s^{2}}{2 \sigma^{2}}\right) Q\left(-\frac{\tilde{m}}{\sigma}\right), \theta \in[-\pi, \pi]
$$

where the parameter \tilde{m} is defined as:

$$
\tilde{m}=m_{1} \cos \theta+m_{2} \sin \theta=\sqrt{m_{1}^{2}+m_{2}^{2}} \cos \left(\theta+\cos ^{-1}\left(\frac{m_{1}}{m_{2}}\right)\right),
$$

and $Q(x)$ denotes the normalized Gaussian tail probability function defined via:

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left(-\frac{y^{2}}{2}\right) d y
$$

When $K=0$, the marginal for the phase is :

$$
f_{\Theta}(\theta)= \begin{cases}\frac{1}{2 \pi} & \theta \in[-\pi, \pi] \\ 0 & \text { otherwise. }\end{cases}
$$

In other words the phase of the random variable Z is uniformly distributed, i.e., $\Theta \sim U([-\pi, \pi])$ when the rice factor of the envelope is $K=0$.

For the specific case when the $K=0$, the Rician faded envelope reduces down to the Rayleigh faded envelope:

$$
f_{R}(r)=\frac{r}{\sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) u(r)
$$

